Skip to content

Fsoft-AIC/SkeletonMamba

Repository files navigation

EgoMusic-driven Human Dance Motion Estimation with Skeleton Mamba

Quang NguyenNhat LeBaoru HuangMinh Nhat Vu • Chengcheng Tang • Van Nguyen • Ngan Le • Thieu VoAnh Nguyen

Website arXiv

Environment Preparation

Follow these steps to install the GraspMAS framework:

  1. Clone repo:
    git clone https://github.com/Fsoft-AIC/SkeletonMamba.git
    cd SkeletonMamba
  2. Prepare environment: cuda==11.8,python==3.11, torch==2.2.0, gcc==11.3 (for State Space Model enviroment). Installing Mamba may cost a lot of effort. If you encounter problems, this issues in Mamba may be very helpful.

Install virtual environment

bash env.sh

Install mujoco.

wget https://github.com/deepmind/mujoco/releases/download/2.1.0/mujoco210-linux-x86_64.tar.gz
tar -xzf mujoco210-linux-x86_64.tar.gz
mkdir ~/.mujoco
mv mujoco210 ~/.mujoco/
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mujoco210/bin

Install PyTorch3D.

conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub
pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu113_pyt1110/download.html
  1. Quick start:
model = SkeletonMamba(
        input_dim=9,
        embed_dim=128,
        depth=8,
        num_joints=24,
        has_text=True,
        d_context=128,
        device="cuda",
        use_pe=2,
        video_frames = 120,
    ).to("cuda")
x = torch.rand(10, 2880, 9).to("cuda")
t = torch.rand(10).to("cuda")
_context = torch.rand(10, 10, 128).to("cuda")
o = model(x, t, y=_context)
_param_count = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Param count: {_param_count}")
print(o.shape)
print(model)

Dataset preparation

The dataset will be published soon!!

Training and Eval

  1. To train the model, run:
bash scripts/train.sh
  1. To evaluate, run:
bash scripts/eval.sh

Citation

Please cite our paper:

@InProceedings{nguyen2025egomusic,
      title={EgoMusic-driven Human Dance Motion Estimation with Skeleton Mamba},
      author={{Nguyen, Quang and Le, Nhat and Huang, Baoru and Vu, Minh Nhat and Tang, Chengcheng and Nguyen, Van and Le, Ngan and Vo, Thieu and Nguyen, Anh},
      booktitle = {ICCV},
      year={2025}
}

Acknowledgement

The code base is develop and adapt from Zigma, EgoEgo

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published