Skip to content

EricssonResearch/radiogunet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

RadioGUNet: Group Equivariant Convolutional Networks for Pathloss Estimation

This repository contains code for training and evaluating the RadioGUNet model in pathloss estimation on RadioMapSeer dataset

Getting Started

Prerequisites

  • requirements.txt

Dataset

Download the RadioMapSeer dataset as described in the paper.


Reproducing Results

The experiments can be reproduced by running the training and testing scripts with the appropriate parameters:

  • model_path: Where to save model checkpoints and logs
  • dataset_path: Path to the RadioMapSeer dataset
  • experiment_type:
    • DPM_no_car
    • DPM_cars
    • IRT_no_car
    • IRT_cars
  • symmetry_group:
    • C2, D2, C4, D4, C8, D8 (as in the paper, can be extended to C16 D16 so long as it is supported in e2cnn)

Training

Replace <exp_type> and <group> with your choices:

python3 train.py \
  --model_path ./results/<exp_type>_<group> \
  --dataset_path ./RadioMapSeer \
  --experiment_type <exp_type> \
  --symmetry_group <group>

Example: DPM with cars, D8 group

python3 train.py \
  --model_path ./results/DPM_cars_D8 \
  --dataset_path ./RadioMapSeer \
  --experiment_type DPM_cars \
  --symmetry_group D8

Evaluation

After training, run evaluation on the test split:

python3 test.py \
  --model_path ./results/<exp_type>_<group> \
  --dataset_path ./RadioMapSeer \
  --experiment_type <exp_type> \
  --symmetry_group <group>

Example: IRT without cars, D4 group

python3 test.py \
  --model_path ./results/IRT_no_car_D4 \
  --dataset_path ./RadioMapSeer \
  --experiment_type IRT_no_car \
  --symmetry_group D4

Notes

  • The scripts automatically configure the dataset loader and model based on your selected experiment and symmetry group.
  • Results, logs, and model checkpoints will be saved in the specified model_path.
  • For additional settings (e.g., batch size, learning rate, model size), edit train.py directly.

Citation

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages