This repository contains code for training and evaluating the RadioGUNet model in pathloss estimation on RadioMapSeer dataset
requirements.txt
Download the RadioMapSeer dataset as described in the paper.
The experiments can be reproduced by running the training and testing scripts with the appropriate parameters:
- model_path: Where to save model checkpoints and logs
- dataset_path: Path to the RadioMapSeer dataset
- experiment_type:
DPM_no_car
DPM_cars
IRT_no_car
IRT_cars
- symmetry_group:
C2
,D2
,C4
,D4
,C8
,D8
(as in the paper, can be extended toC16
D16
so long as it is supported ine2cnn
)
Replace <exp_type>
and <group>
with your choices:
python3 train.py \
--model_path ./results/<exp_type>_<group> \
--dataset_path ./RadioMapSeer \
--experiment_type <exp_type> \
--symmetry_group <group>
python3 train.py \
--model_path ./results/DPM_cars_D8 \
--dataset_path ./RadioMapSeer \
--experiment_type DPM_cars \
--symmetry_group D8
After training, run evaluation on the test split:
python3 test.py \
--model_path ./results/<exp_type>_<group> \
--dataset_path ./RadioMapSeer \
--experiment_type <exp_type> \
--symmetry_group <group>
python3 test.py \
--model_path ./results/IRT_no_car_D4 \
--dataset_path ./RadioMapSeer \
--experiment_type IRT_no_car \
--symmetry_group D4
- The scripts automatically configure the dataset loader and model based on your selected experiment and symmetry group.
- Results, logs, and model checkpoints will be saved in the specified
model_path
. - For additional settings (e.g., batch size, learning rate, model size), edit
train.py
directly.