Skip to content

✨ Add LPBNN, Adaptive ECE, start supporting Depth estimation & Improve segmentation #93

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 128 commits into from
May 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
128 commits
Select commit Hold shift + click to select a range
443709b
:sparkles: Add base of BTS
o-laurent Mar 27, 2024
3a03936
:sparkles: Add base of Depth routine
o-laurent Mar 27, 2024
16389fd
:shirt: Move one import to the top
o-laurent Mar 27, 2024
9ebe79a
:book: Slightly improve the documentation
o-laurent Mar 28, 2024
5a46bc0
:shirt: Refine rdme & tutorial
o-laurent Mar 29, 2024
23081af
Merge branch 'main' of github.com:ENSTA-U2IS-AI/torch-uncertainty int…
o-laurent Mar 29, 2024
cdc22c8
:shirt: Various improvements
o-laurent Mar 31, 2024
ff45108
:sparkles: Add LPBNN layers
o-laurent Mar 31, 2024
eba5407
:bug: Fix batch repeat
o-laurent Mar 31, 2024
f534369
:shirt: Move & improve LP-BNN layers & misc
o-laurent Apr 1, 2024
14e6d0a
:white_check_mark: Add first LPBNN tests
o-laurent Apr 1, 2024
7742ee7
:white_check_mark: Finish LPBNN's layers' tests
o-laurent Apr 1, 2024
740ae5b
:book: Add Reference to LPBNN
o-laurent Apr 2, 2024
924a18b
:sparkles: Merge pull request #90 from ENSTA-U2IS-AI/lpbnn
o-laurent Apr 2, 2024
27b9ad7
Merge branch 'dev' of github.com:ENSTA-U2IS-AI/torch-uncertainty into…
o-laurent Apr 2, 2024
d9f0e21
Merge branch 'main' of github.com:ENSTA-U2IS-AI/torch-uncertainty int…
o-laurent Apr 2, 2024
ddbf069
Merge branch 'dev' of github.com:ENSTA-U2IS-AI/torch-uncertainty into…
o-laurent Apr 2, 2024
5a8aa7e
Merge branch 'dev' of github.com:ENSTA-U2IS-AI/torch-uncertainty into…
o-laurent Apr 2, 2024
427846c
:books: Fix MC BatchNorm tutorial
o-laurent Apr 2, 2024
4e18070
:sparkles: Add sqrt parameter to the SILog
o-laurent Apr 2, 2024
43756f3
Merge branch 'dev' of github.com:ENSTA-U2IS-AI/torch-uncertainty into…
o-laurent Apr 2, 2024
ac1417e
:book: Fix contribution rst file
alafage Apr 2, 2024
cdc0699
:fire: Remove two useless imports in tutorial
o-laurent Apr 2, 2024
e3cad56
:hammer: Improve BTS
o-laurent Apr 2, 2024
568e2e5
Merge branch 'dev' of github.com:ENSTA-U2IS-AI/torch-uncertainty into…
o-laurent Apr 4, 2024
a0f17b6
:shirt: Continue improving BTS
o-laurent Apr 4, 2024
a75fc58
:shirt: Lint docs
o-laurent Apr 4, 2024
d6b9e84
:shirt: Various improvements
o-laurent Apr 4, 2024
0d40063
:sparkles: Sketch probabilistic BTS
o-laurent Apr 4, 2024
e5aaf97
:sparkles: Add DeepLab base
o-laurent Apr 4, 2024
e3e110c
:hammer: Various Deeplab improvements
o-laurent Apr 4, 2024
6bc2da2
:sparkles: Sync logs in multi-GPU training
o-laurent Apr 4, 2024
aeb0799
:sparkles: Add DeepLabV3 baseline & experiment
o-laurent Apr 4, 2024
dba5bf1
:sparkles: Add pretrained parameters to BTS and DeepLab
o-laurent Apr 5, 2024
07e2c78
:sparkles: Add PolyLR and update semseg configs
o-laurent Apr 5, 2024
581e1c4
:fire: Remove val metrics init
o-laurent Apr 6, 2024
3e14436
✅ & 📇 adding kitti approach dataloader
gaetanbrison Apr 9, 2024
40709c3
🐎 adding inverse metrics
gaetanbrison Apr 9, 2024
6e103ed
add AECE metric
qbouniot Apr 16, 2024
1e5c52a
merge with dev
qbouniot Apr 16, 2024
2b0f98b
minor fix
qbouniot Apr 17, 2024
2bcb1a4
Merge branch 'main' of github.com:ENSTA-U2IS/torch-uncertainty into dev
o-laurent Apr 22, 2024
c44e60d
Merge branch 'dev' of https://github.com/ENSTA-U2IS/torch-uncertainty…
o-laurent Apr 22, 2024
908e4b9
:sparkles: Add reference & start docstring
o-laurent Apr 22, 2024
c66d22c
:shirt: Add num_cal_bins parameter to class. routine
o-laurent Apr 22, 2024
48a33c9
:wrench: OpenCV is a core dependency
o-laurent Apr 22, 2024
c973b8c
:hammer: Refactor AdaptiveCalibrationError
o-laurent Apr 22, 2024
7689e4a
:green_heart: Improve HF server errors handling in GH
o-laurent Apr 22, 2024
acdb490
:sparkles: Finish refactoring AECE
o-laurent Apr 23, 2024
ec3aab4
:white_check_mark: Fix useless double check
o-laurent Apr 23, 2024
89e5069
:shirt: Slightly improve the scaling tutorial
o-laurent Apr 23, 2024
1d0988b
:white_check_mark: Improve metrics coverage
o-laurent Apr 23, 2024
76f5140
:sparkles: Merge pull request #92 from qbouniot/dev_aece
o-laurent Apr 23, 2024
16e496e
Merge branch 'dev' of github.com:ENSTA-U2IS-AI/torch-uncertainty into…
o-laurent Apr 23, 2024
ae47937
Merge branch 'depth' of github.com:ENSTA-U2IS-AI/torch-uncertainty in…
o-laurent Apr 23, 2024
96bd269
:sparkles: Enable interpolation choice on ImageNet
o-laurent Apr 23, 2024
ce7627d
:heavy_check_mark: Fix small error
o-laurent Apr 23, 2024
50eb84b
:hammer: Complete inverse metrics overhaul
o-laurent Apr 24, 2024
d848045
:white_check_mark: Add tests for the inverse metrics
o-laurent Apr 24, 2024
b4f9d3b
:fire: Do not use depth metrics in the regression routine
o-laurent Apr 24, 2024
6163303
:sparkles: Add inverse metrics to the depth routine
o-laurent Apr 24, 2024
5dcbe2e
:fire: Revert weird changes
o-laurent Apr 24, 2024
a96482e
:bug: Fix mIoU & add mAcc
o-laurent Apr 24, 2024
0ff53b6
:hammer: Rename nll.py into categorical_nll.py
o-laurent Apr 24, 2024
3be17d5
:sparkles: Add the AURC metric
o-laurent Apr 24, 2024
cc2d8bb
:bug: Fix adaptive ECE on GPU
o-laurent Apr 24, 2024
6a74153
:sparkles: Add AURC to the cls. routine
o-laurent Apr 24, 2024
be276a2
:bug: Fix & simplify ECE plot
o-laurent Apr 24, 2024
3aeeb4b
:bug: Start fixing the deeplab model
o-laurent Apr 24, 2024
93e9335
:shirt: Improve the sparsification metric
o-laurent Apr 24, 2024
d362492
Merge branch 'dev' of github.com:ENSTA-U2IS-AI/torch-uncertainty into…
o-laurent Apr 24, 2024
324a2fc
:books: Add docstring & ref to AURC
o-laurent Apr 25, 2024
18e7c21
:white_check_mark: Add tests for AURC
o-laurent Apr 25, 2024
03c84a7
:heavy_check_mark: Improve existing tests
o-laurent Apr 25, 2024
875ee29
:fire: Simplify ResNets & update tests
o-laurent Apr 25, 2024
9d0b873
:sparkles: Add LPBNN ResNet
o-laurent Apr 25, 2024
07e5a6e
:shirt: Remove resets from on_test_epoch_end
o-laurent Apr 25, 2024
924d967
:sparkles: KITTI Depth suport (automatic download available)
alafage Apr 25, 2024
cf94264
Merge branch 'depth' of https://github.com/ENSTA-U2IS/torch-uncertain…
alafage Apr 25, 2024
7e5dacc
:white_check_mark: Slightly improve cov.
o-laurent Apr 25, 2024
57448c2
:shirt: Improve cls. metrics handling
o-laurent Apr 25, 2024
4724432
:sparkles: Enrich baselines
o-laurent Apr 25, 2024
6180299
:racehorse: Faster AURC plot
o-laurent Apr 25, 2024
2013ad4
:sparkles: Add subsampling, metrics & plots to seg. routine
o-laurent Apr 25, 2024
87cce0d
:white_check_mark: Improve overall cov.
o-laurent Apr 25, 2024
6efe031
:bug: Fix test matches
o-laurent Apr 25, 2024
845a173
:bug: Log all metrics at val step end
o-laurent Apr 25, 2024
bea43e6
:bug: Fix AURC GPU error
o-laurent Apr 25, 2024
96e0c49
:sparkles: Add 2 SC metrics
o-laurent Apr 26, 2024
027d780
:shirt: Various small changes
o-laurent Apr 26, 2024
d9e5032
:white_check_mark: Slightly improve coverage
o-laurent Apr 26, 2024
4b0f26d
:heavy_check_mark: Add forgotten test change
o-laurent Apr 26, 2024
13da350
:fire: Download filenames in KITTI-Depth
o-laurent Apr 26, 2024
cf8878a
:sparkles: Fix depth dms & add KITTI dm
o-laurent Apr 26, 2024
e08a272
:bug: Fix tests
o-laurent Apr 26, 2024
3e2856e
:shirt: Simplify SegFormer code
o-laurent Apr 26, 2024
93d7c1d
:bug: Fix SC metrics
o-laurent Apr 26, 2024
4c92fbf
:sparkles: Rename, Improve & Test DeepLab
o-laurent Apr 26, 2024
31fcbbc
:hammer: Rename memetrics
o-laurent Apr 26, 2024
58dd182
:books: Add metrics to docs
o-laurent Apr 26, 2024
cd3d80f
:hammer: Rename depth dm folder
o-laurent Apr 26, 2024
c37d803
:shirt: Reduce CPL in metrics
o-laurent Apr 26, 2024
3226e4b
:racehorse: Reduce SILog's memory footprint
o-laurent Apr 26, 2024
7d40541
:hammer: Simplify VGG code
o-laurent Apr 26, 2024
ca9bc2c
:bug: Fix SILog optimized implementation
o-laurent Apr 26, 2024
23300c5
:tada: depth routine works
o-laurent Apr 26, 2024
8aed960
:sparkles: Finish BTS & add first KITTI experiment
o-laurent Apr 26, 2024
7cae490
:white_check_mark: Add tests & small changes
o-laurent Apr 26, 2024
b8e7ba0
:bug: Fix log10 metric
o-laurent Apr 27, 2024
2adc7b3
:bug: Fix SC metrics
o-laurent Apr 27, 2024
89c1398
:white_check_mark: Slightly improve cov.
o-laurent Apr 27, 2024
aa568fa
:sparkles: Add NYUv2 dataset/module & BTS experiment
o-laurent Apr 27, 2024
8e3d36a
:white_check_mark: Improve coverage
o-laurent Apr 27, 2024
e7c337a
:fire: Simplify depth datamodules
o-laurent Apr 27, 2024
0b2e7fc
:white_check_mark: Improve coverage
o-laurent Apr 27, 2024
c194fe8
:fire: Simplify segformer code
o-laurent Apr 27, 2024
44102ea
:book: Add official implementations to the ReadMe & documentation
o-laurent Apr 29, 2024
d32d47f
:sparkles: Add min depth & depth plots
o-laurent Apr 29, 2024
b70781f
:bug: Fix test
o-laurent Apr 29, 2024
d15b9f8
:bug: Fix Cov@xRisk in non-monotonic cases
o-laurent Apr 30, 2024
d96bac2
:heavy_check_mark: Improve metric cov.
o-laurent Apr 30, 2024
153b6eb
:heavy_check_mark: Fix interpolation error + device in AECE metric
qbouniot May 3, 2024
cc67af1
:shirt: Improve code
o-laurent May 29, 2024
63258ca
:hammer: Rename depth to pixel regression
o-laurent May 29, 2024
4affdfc
:white_check_mark: Fix tests
o-laurent May 29, 2024
6088f39
Merge branch 'main' of github.com:ENSTA-U2IS-AI/torch-uncertainty int…
o-laurent May 29, 2024
54afc93
Merge branch 'dev' of github.com:ENSTA-U2IS-AI/torch-uncertainty into…
o-laurent May 29, 2024
d22221c
:sparkles: Merge pull request #88 from ENSTA-U2IS-AI/depth
o-laurent May 29, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 11 additions & 17 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,9 @@ _TorchUncertainty_ is a package designed to help you leverage [uncertainty quant

:construction: _TorchUncertainty_ is in early development :construction: - expect changes, but reach out and contribute if you are interested in the project! **Please raise an issue if you have any bugs or difficulties and join the [discord server](https://discord.gg/HMCawt5MJu).**

Our webpage and documentation is available here: [torch-uncertainty.github.io](https://torch-uncertainty.github.io).
:books: Our webpage and documentation is available here: [torch-uncertainty.github.io](https://torch-uncertainty.github.io). :books:

TorchUncertainty contains the *official implementations* of multiple papers from *major machine-learning and computer vision conferences* and was/will be featured in tutorials at **WACV 2024** and **ECCV 2024**.

---

Expand Down Expand Up @@ -47,7 +49,14 @@ We make a quickstart available at [torch-uncertainty.github.io/quickstart](https

## :books: Implemented methods

TorchUncertainty currently supports **Classification**, **probabilistic** and pointwise **Regression** and **Segmentation**.
TorchUncertainty currently supports **classification**, **probabilistic** and pointwise **regression**, **segmentation** and **pixelwise regression** (such as monocular depth estimation). It includes the official codes of the following papers:

- *A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors* - [ICLR 2024](https://arxiv.org/abs/2310.08287)
- *LP-BNN: Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification* - [IEEE TPAMI](https://arxiv.org/abs/2012.02818)
- *Packed-Ensembles for Efficient Uncertainty Estimation* - [ICLR 2023](https://arxiv.org/abs/2210.09184) - [Tutorial](https://torch-uncertainty.github.io/auto_tutorials/tutorial_pe_cifar10.html)
- *MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks* - [BMVC 2022](https://arxiv.org/abs/2203.01437)

We also provide the following methods:

### Baselines

Expand Down Expand Up @@ -86,18 +95,3 @@ Our documentation contains the following tutorials:
- [Deep Evidential Regression on a Toy Example](https://torch-uncertainty.github.io/auto_tutorials/tutorial_der_cubic.html)
- [Training a LeNet with Monte-Carlo Dropout](https://torch-uncertainty.github.io/auto_tutorials/tutorial_mc_dropout.html)
- [Training a LeNet with Deep Evidential Classification](https://torch-uncertainty.github.io/auto_tutorials/tutorial_evidential_classification.html)

## Other References

This package also contains the official implementation of Packed-Ensembles.

If you find the corresponding models interesting, please consider citing our [paper](https://arxiv.org/abs/2210.09184):

```text
@inproceedings{laurent2023packed,
title={Packed-Ensembles for Efficient Uncertainty Estimation},
author={Laurent, Olivier and Lafage, Adrien and Tartaglione, Enzo and Daniel, Geoffrey and Martinez, Jean-Marc and Bursuc, Andrei and Franchi, Gianni},
booktitle={ICLR},
year={2023}
}
```
2 changes: 0 additions & 2 deletions auto_tutorials_source/tutorial_corruptions.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,9 @@
torchvision and matplotlib.
"""

import torch
from torchvision.datasets import CIFAR10
from torchvision.transforms import Compose, ToTensor, Resize

from torchvision.utils import make_grid
import matplotlib.pyplot as plt

ds = CIFAR10("./data", train=False, download=True)
Expand Down
18 changes: 10 additions & 8 deletions auto_tutorials_source/tutorial_mc_batch_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,9 +72,11 @@
# %%
# 4. Gathering Everything and Training the Model
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# You can also save the results in a variable by saving the output of
# `trainer.test`.

trainer.fit(model=routine, datamodule=datamodule)
trainer.test(model=routine, datamodule=datamodule)
trainer.test(model=routine, datamodule=datamodule);

# %%
# 5. Wrapping the Model in a MCBatchNorm
Expand All @@ -88,10 +90,10 @@
# to highlight the effect of stochasticity on the predictions.

routine.model = MCBatchNorm(
routine.model, num_estimators=8, convert=True, mc_batch_size=4
routine.model, num_estimators=8, convert=True, mc_batch_size=16
)
routine.model.fit(datamodule.train)
routine.eval()
routine.eval();

# %%
# 6. Testing the Model
Expand All @@ -118,17 +120,17 @@ def imshow(img):
dataiter = iter(datamodule.val_dataloader())
images, labels = next(dataiter)

# print images
imshow(torchvision.utils.make_grid(images[:4, ...]))
print("Ground truth: ", " ".join(f"{labels[j]}" for j in range(4)))

routine.eval()
logits = routine(images).reshape(8, 128, 10)

probs = torch.nn.functional.softmax(logits, dim=-1)
most_uncertain = sorted(probs.var(0).sum(-1).topk(4).indices)

# print images
imshow(torchvision.utils.make_grid(images[most_uncertain, ...]))
print("Ground truth: ", " ".join(f"{labels[j]}" for j in range(4)))

for j in sorted(probs.var(0).sum(-1).topk(4).indices):
for j in most_uncertain:
values, predicted = torch.max(probs[:, j], 1)
print(
f"Predicted digits for the image {j}: ",
Expand Down
12 changes: 5 additions & 7 deletions auto_tutorials_source/tutorial_scaler.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,19 +17,17 @@

In this tutorial, we will need:

- torch for its objects
- the "calibration error" metric to compute the ECE and evaluate the top-label calibration
- TorchUncertainty's Calibration Error metric to compute to evaluate the top-label calibration with ECE and plot the reliability diagrams
- the CIFAR-100 datamodule to handle the data
- a ResNet 18 as starting model
- the temperature scaler to improve the top-label calibration
- a utility to download hf models easily
- the calibration plot to visualize the calibration.
- a utility function to download HF models easily

If you use the classification routine, the plots will be automatically available in the tensorboard logs.
If you use the classification routine, the plots will be automatically available in the tensorboard logs if you use the `log_plots` flag.
"""

from torch_uncertainty.datamodules import CIFAR100DataModule
from torch_uncertainty.metrics import CE
from torch_uncertainty.metrics import CalibrationError
from torch_uncertainty.models.resnet import resnet18
from torch_uncertainty.post_processing import TemperatureScaler
from torch_uncertainty.utils import load_hf
Expand Down Expand Up @@ -88,7 +86,7 @@
test_dataloader = DataLoader(test_dataset, batch_size=32)

# Initialize the ECE
ece = CE(task="multiclass", num_classes=100)
ece = CalibrationError(task="multiclass", num_classes=100)

# Iterate on the calibration dataloader
for sample, target in test_dataloader:
Expand Down
33 changes: 30 additions & 3 deletions docs/source/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ API Reference
Routines
--------

The routine are the main building blocks of the library. They define the framework
The routine are the main building blocks of the library. They define the framework
in which the models are trained and evaluated. They allow for easy computation of different
metrics crucial for uncertainty estimation in different contexts, namely classification, regression and segmentation.

Expand Down Expand Up @@ -42,10 +42,20 @@ Segmentation

SegmentationRoutine

Pixelwise Regression
^^^^^^^^^^^^^^^^^^^^

.. autosummary::
:toctree: generated/
:nosignatures:
:template: class.rst

PixelRegressionRoutine

Baselines
---------

TorchUncertainty provide lightning-based models that can be easily trained and evaluated.
TorchUncertainty provide lightning-based models that can be easily trained and evaluated.
These models inherit from the routines and are specifically designed to benchmark
different methods in similar settings, here with constant architectures.

Expand Down Expand Up @@ -85,8 +95,19 @@ Segmentation
:nosignatures:
:template: class.rst

DeepLabBaseline
SegFormerBaseline

Monocular Depth Estimation
^^^^^^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
:toctree: generated/
:nosignatures:
:template: class.rst

BTSBaseline

Layers
------

Expand Down Expand Up @@ -122,6 +143,8 @@ Bayesian layers
BayesConv1d
BayesConv2d
BayesConv3d
LPBNNLinear
LPBNNConv2d

Models
------
Expand Down Expand Up @@ -158,9 +181,12 @@ Metrics
:template: class.rst

AUSE
AURC
AdaptiveCalibrationError
BrierScore
CategoricalNLL
CE
CalibrationError
CovAt5Risk,
Disagreement
DistributionNLL
Entropy
Expand All @@ -169,6 +195,7 @@ Metrics
MeanGTRelativeAbsoluteError
MeanGTRelativeSquaredError
MutualInformation
RiskAt80Cov,
SILog
ThresholdAccuracy

Expand Down
9 changes: 4 additions & 5 deletions docs/source/contributing.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,7 @@ The scope of TorchUncertainty
TorchUncertainty can host any method - if possible linked to a paper - and
roughly contained in the following fields:

* Uncertainty quantification in general, including Bayesian deep learning,
Monte Carlo dropout, ensemble methods, etc.
* Uncertainty quantification in general, including Bayesian deep learning, Monte Carlo dropout, ensemble methods, etc.
* Out-of-distribution detection methods
* Applications (e.g. object detection, segmentation, etc.)

Expand Down Expand Up @@ -54,7 +53,7 @@ group:
Then navigate to ``./docs`` and build the documentation with:

.. parsed-literal::

make html

Optionally, specify ``html-noplot`` instead of ``html`` to avoid running the tutorials.
Expand All @@ -73,7 +72,7 @@ PR. This will avoid multiplying the number featureless commits. To do this,
run, at the root of the folder:

.. parsed-literal::

python3 -m pytest tests

Try to include an emoji at the start of each commit message following the suggestions
Expand Down Expand Up @@ -118,4 +117,4 @@ License

If you feel that the current license is an obstacle to your contribution, let
us know, and we may reconsider. However, the models’ weights hosted on Hugging
Face are likely to stay Apache 2.0.
Face are likely to remain Apache 2.0.
36 changes: 30 additions & 6 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -11,10 +11,10 @@ Welcome to Torch Uncertainty

Welcome to the documentation of TorchUncertainty.

This website contains the documentation for
This website contains the documentation for
`installing <https://torch-uncertainty.github.io/installation.html>`_
and `contributing <https://torch-uncertainty.github.io/>`_ to TorchUncertainty,
details on the `API <https://torch-uncertainty.github.io/api.html>`_, and a
and `contributing <https://torch-uncertainty.github.io/>`_ to TorchUncertainty,
details on the `API <https://torch-uncertainty.github.io/api.html>`_, and a
`comprehensive list of the references <https://torch-uncertainty.github.io/references.html>`_ of
the models and metrics implemented.

Expand All @@ -29,12 +29,36 @@ Installation
To install TorchUncertainty with contribution in mind, check the
`contribution page <https://torch-uncertainty.github.io/contributing.html>`_.

-----

Official Implementations
^^^^^^^^^^^^^^^^^^^^^^^^

TorchUncertainty also houses multiple official implementations of papers from major conferences & journals.

**A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors**

* Authors: *Olivier Laurent, Emanuel Aldea, and Gianni Franchi*
* Paper: `ICLR 2024 <https://arxiv.org/abs/2310.08287>`_.

**Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification**

* Authors: *Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Severine Dubuisson, and Isabelle Bloch*
* Paper: `IEEE TPAMI <https://arxiv.org/abs/2012.02818>`_.

**Packed-Ensembles for Efficient Uncertainty Estimation**

* Authors: *Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, Andrei Bursuc, and Gianni Franchi*
* Paper: `ICLR 2023 <https://arxiv.org/abs/2210.09184>`_.

**MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks**

* Authors: *Gianni Franchi, Xuanlong Yu, Andrei Bursuc, Angel Tena, Rémi Kazmierczak, Séverine Dubuisson, Emanuel Aldea, David Filliat*
* Paper: `BMVC 2022 <https://arxiv.org/abs/2203.01437>`_.

Packed-Ensembles
^^^^^^^^^^^^^^^^

Finally, TorchUncertainty also includes the official PyTorch implementation for
the following paper:

**Packed-Ensembles for Efficient Uncertainty Estimation**

* Authors: *Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, Andrei Bursuc, and Gianni Franchi*
Expand Down
4 changes: 2 additions & 2 deletions docs/source/installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ From PyPI
---------

Check that you have PyTorch (cpu or gpu) installed on your system. Then, install
the package via pip:
the package via pip:

.. parsed-literal::

Expand All @@ -24,7 +24,7 @@ To update the package, run:

.. parsed-literal::

pip install -U torch-uncertainty
pip install -U torch-uncertainty

From source
-----------
Expand Down
Loading
Loading