Skip to content

👕 Change character per line limit to 100 & remove explicit dependencies from pyproject #124

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Nov 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 2 additions & 4 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -25,18 +25,16 @@ keywords = [
]
classifiers = [
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
]
dependencies = [
"timm",
"lightning[pytorch-extra]>=2.0",
"torchvision>=0.16",
"einops",
"matplotlib",
"rich>=10.2.2",
"seaborn",
]

Expand Down Expand Up @@ -82,7 +80,7 @@ repository = "https://github.com/ENSTA-U2IS-AI/torch-uncertainty.git"
name = "torch_uncertainty"

[tool.ruff]
line-length = 80
line-length = 100
target-version = "py310"
lint.extend-select = [
"A",
Expand Down
10 changes: 3 additions & 7 deletions tests/_dummies/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,9 +65,7 @@ def __init__(
else:
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC

self.targets = torch.randint(
low=0, high=num_classes, size=(num_images,)
)
self.targets = torch.randint(low=0, high=num_classes, size=(num_images,))
self.targets = torch.arange(start=0, end=num_classes).repeat(
num_images // (num_classes) + 1
)[:num_images]
Expand Down Expand Up @@ -123,10 +121,8 @@ def __init__(
self.targets = []

input_shape = (num_samples, in_features)
if out_features != 1:
output_shape = (num_samples, out_features)
else:
output_shape = (num_samples,)

output_shape = (num_samples, out_features) if out_features != 1 else (num_samples,)

self.data = torch.rand(
size=input_shape,
Expand Down
4 changes: 1 addition & 3 deletions tests/_dummies/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,9 +60,7 @@ def __init__(
self.in_channels = in_channels
self.num_classes = num_classes
self.image_size = image_size
self.conv = nn.Conv2d(
in_channels, num_classes, kernel_size=3, padding=1
)
self.conv = nn.Conv2d(in_channels, num_classes, kernel_size=3, padding=1)
self.dropout = nn.Dropout(p=dropout_rate)
self.last_layer = last_layer

Expand Down
4 changes: 1 addition & 3 deletions tests/baselines/test_deep_ensembles.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,9 +9,7 @@ class TestDeepEnsembles:
"""Testing the Deep Ensembles baseline class."""

def test_failure(self):
with pytest.raises(
ValueError, match="Models must not be an empty list."
):
with pytest.raises(ValueError, match="Models must not be an empty list."):
DeepEnsemblesBaseline(
log_path=".",
checkpoint_ids=[],
Expand Down
32 changes: 13 additions & 19 deletions tests/datamodules/classification/test_cifar10.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,9 +72,7 @@ def test_cifar10_main(self):
auto_augment="rand-m9-n2-mstd0.5",
)

with pytest.raises(
ValueError, match="CIFAR-H can only be used in testing."
):
with pytest.raises(ValueError, match="CIFAR-H can only be used in testing."):
dm = CIFAR10DataModule(
root="./data/",
batch_size=128,
Expand All @@ -100,25 +98,21 @@ def test_cifar10_main(self):

def test_cifar10_cv(self):
dm = CIFAR10DataModule(root="./data/", batch_size=128)
dm.dataset = (
lambda root, train, download, transform: DummyClassificationDataset(
root,
train=train,
download=download,
transform=transform,
num_images=20,
)
dm.dataset = lambda root, train, download, transform: DummyClassificationDataset(
root,
train=train,
download=download,
transform=transform,
num_images=20,
)
dm.make_cross_val_splits(2, 1)

dm = CIFAR10DataModule(root="./data/", batch_size=128, val_split=0.1)
dm.dataset = (
lambda root, train, download, transform: DummyClassificationDataset(
root,
train=train,
download=download,
transform=transform,
num_images=20,
)
dm.dataset = lambda root, train, download, transform: DummyClassificationDataset(
root,
train=train,
download=download,
transform=transform,
num_images=20,
)
dm.make_cross_val_splits(2, 1)
36 changes: 14 additions & 22 deletions tests/datamodules/classification/test_cifar100.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,35 +58,27 @@ def test_cifar100(self):
randaugment=True,
)

dm = CIFAR100DataModule(
root="./data/", batch_size=128, randaugment=True
)
dm = CIFAR100DataModule(root="./data/", batch_size=128, randaugment=True)

dm = CIFAR100DataModule(
root="./data/", batch_size=128, auto_augment="rand-m9-n2-mstd0.5"
)
dm = CIFAR100DataModule(root="./data/", batch_size=128, auto_augment="rand-m9-n2-mstd0.5")

def test_cifar100_cv(self):
dm = CIFAR100DataModule(root="./data/", batch_size=128)
dm.dataset = (
lambda root, train, download, transform: DummyClassificationDataset(
root,
train=train,
download=download,
transform=transform,
num_images=20,
)
dm.dataset = lambda root, train, download, transform: DummyClassificationDataset(
root,
train=train,
download=download,
transform=transform,
num_images=20,
)
dm.make_cross_val_splits(2, 1)

dm = CIFAR100DataModule(root="./data/", batch_size=128, val_split=0.1)
dm.dataset = (
lambda root, train, download, transform: DummyClassificationDataset(
root,
train=train,
download=download,
transform=transform,
num_images=20,
)
dm.dataset = lambda root, train, download, transform: DummyClassificationDataset(
root,
train=train,
download=download,
transform=transform,
num_images=20,
)
dm.make_cross_val_splits(2, 1)
24 changes: 6 additions & 18 deletions tests/datamodules/classification/test_imagenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,7 @@ def test_imagenet(self):
dm.prepare_data()
dm.setup()

path = (
Path(__file__).parent.resolve() / "../../assets/dummy_indices.yaml"
)
path = Path(__file__).parent.resolve() / "../../assets/dummy_indices.yaml"
dm = ImageNetDataModule(root="./data/", batch_size=128, val_split=path)
dm.dataset = DummyClassificationDataset
dm.ood_dataset = DummyClassificationDataset
Expand Down Expand Up @@ -55,22 +53,16 @@ def test_imagenet(self):
dm.setup("other")

for test_alt in ["r", "o", "a"]:
dm = ImageNetDataModule(
root="./data/", batch_size=128, test_alt=test_alt
)
dm = ImageNetDataModule(root="./data/", batch_size=128, test_alt=test_alt)

with pytest.raises(ValueError):
dm.setup()

with pytest.raises(ValueError):
dm = ImageNetDataModule(
root="./data/", batch_size=128, test_alt="x"
)
dm = ImageNetDataModule(root="./data/", batch_size=128, test_alt="x")

for ood_ds in ["inaturalist", "imagenet-o", "textures", "openimage-o"]:
dm = ImageNetDataModule(
root="./data/", batch_size=128, ood_ds=ood_ds
)
dm = ImageNetDataModule(root="./data/", batch_size=128, ood_ds=ood_ds)
if ood_ds == "inaturalist":
dm.eval_ood = True
dm.dataset = DummyClassificationDataset
Expand All @@ -80,9 +72,7 @@ def test_imagenet(self):
dm.test_dataloader()

with pytest.raises(ValueError):
dm = ImageNetDataModule(
root="./data/", batch_size=128, ood_ds="other"
)
dm = ImageNetDataModule(root="./data/", batch_size=128, ood_ds="other")

for procedure in ["ViT", "A3"]:
dm = ImageNetDataModule(
Expand All @@ -93,9 +83,7 @@ def test_imagenet(self):
)

with pytest.raises(ValueError):
dm = ImageNetDataModule(
root="./data/", batch_size=128, procedure="A2"
)
dm = ImageNetDataModule(root="./data/", batch_size=128, procedure="A2")

with pytest.raises(FileNotFoundError):
dm._verify_splits(split="test")
Expand Down
12 changes: 3 additions & 9 deletions tests/datamodules/classification/test_tiny_imagenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,7 @@ def test_tiny_imagenet(self):
)

with pytest.raises(ValueError):
TinyImageNetDataModule(
root="./data/", batch_size=128, ood_ds="other"
)
TinyImageNetDataModule(root="./data/", batch_size=128, ood_ds="other")

dm.dataset = DummyClassificationDataset
dm.ood_dataset = DummyClassificationDataset
Expand All @@ -52,9 +50,7 @@ def test_tiny_imagenet(self):
dm.setup("test")
dm.test_dataloader()

dm = TinyImageNetDataModule(
root="./data/", batch_size=128, ood_ds="svhn"
)
dm = TinyImageNetDataModule(root="./data/", batch_size=128, ood_ds="svhn")
dm.dataset = DummyClassificationDataset
dm.ood_dataset = DummyClassificationDataset
dm.shift_dataset = DummyClassificationDataset
Expand All @@ -70,9 +66,7 @@ def test_tiny_imagenet_cv(self):
)
dm.make_cross_val_splits(2, 1)

dm = TinyImageNetDataModule(
root="./data/", batch_size=128, val_split=0.1
)
dm = TinyImageNetDataModule(root="./data/", batch_size=128, val_split=0.1)
dm.dataset = lambda root, split, transform: DummyClassificationDataset(
root, split=split, transform=transform, num_images=20
)
Expand Down
8 changes: 2 additions & 6 deletions tests/datamodules/segmentation/test_camvid.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,12 +9,8 @@ class TestCamVidDataModule:
"""Testing the CamVidDataModule datamodule."""

def test_camvid_main(self):
dm = CamVidDataModule(
root="./data/", batch_size=128, group_classes=False
)
dm = CamVidDataModule(
root="./data/", batch_size=128, basic_augment=False
)
dm = CamVidDataModule(root="./data/", batch_size=128, group_classes=False)
dm = CamVidDataModule(root="./data/", batch_size=128, basic_augment=False)

assert dm.dataset == CamVid

Expand Down
4 changes: 1 addition & 3 deletions tests/datamodules/segmentation/test_cityscapes.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,7 @@ class TestCityscapesDataModule:

def test_camvid_main(self):
dm = CityscapesDataModule(root="./data/", batch_size=128)
dm = CityscapesDataModule(
root="./data/", batch_size=128, basic_augment=False
)
dm = CityscapesDataModule(root="./data/", batch_size=128, basic_augment=False)

assert dm.dataset == Cityscapes

Expand Down
8 changes: 2 additions & 6 deletions tests/datamodules/test_abstract_datamodule.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,7 @@ def test_cv_main(self):
dm.train = ds
dm.val = ds
dm.test = ds
cv_dm = CrossValDataModule(
"root", [0], [1], dm, 128, 0.0, 4, True, True
)
cv_dm = CrossValDataModule("root", [0], [1], dm, 128, 0.0, 4, True, True)

cv_dm.setup()
cv_dm.setup("test")
Expand All @@ -54,9 +52,7 @@ def test_errors(self):
dm.train = ds
dm.val = ds
dm.test = ds
cv_dm = CrossValDataModule(
"root", [0], [1], dm, 128, 0.0, 4, True, True
)
cv_dm = CrossValDataModule("root", [0], [1], dm, 128, 0.0, 4, True, True)
with pytest.raises(NotImplementedError):
cv_dm.setup()
cv_dm._get_train_data()
Expand Down
4 changes: 1 addition & 3 deletions tests/datamodules/test_depth.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,7 @@ class TestMUADDataModule:
"""Testing the MUADDataModule datamodule."""

def test_muad_main(self):
dm = MUADDataModule(
root="./data/", min_depth=0, max_depth=100, batch_size=128
)
dm = MUADDataModule(root="./data/", min_depth=0, max_depth=100, batch_size=128)

assert dm.dataset == MUAD

Expand Down
4 changes: 1 addition & 3 deletions tests/datamodules/test_uci_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,7 @@ class TestUCIRegressionDataModule:
"""Testing the UCIRegressionDataModule datamodule class."""

def test_uci_regression(self):
dm = UCIRegressionDataModule(
dataset_name="kin8nm", root="./data/", batch_size=128
)
dm = UCIRegressionDataModule(dataset_name="kin8nm", root="./data/", batch_size=128)

dm.dataset = partial(DummyRegressionDataset, num_samples=64)
dm.prepare_data()
Expand Down
24 changes: 6 additions & 18 deletions tests/layers/test_bayesian.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,9 +80,7 @@ def test_conv1(self, feat_input_odd: torch.Tensor) -> None:
assert out.shape == torch.Size([2, 10])

def test_conv1_even(self, feat_input_even: torch.Tensor) -> None:
layer = BayesConv1d(
8, 2, kernel_size=1, sigma_init=0, padding_mode="reflect"
)
layer = BayesConv1d(8, 2, kernel_size=1, sigma_init=0, padding_mode="reflect")
print(layer)
out = layer(feat_input_even)
assert out.shape == torch.Size([2, 10])
Expand All @@ -94,9 +92,7 @@ def test_conv1_even(self, feat_input_even: torch.Tensor) -> None:

def test_error(self):
with pytest.raises(ValueError):
BayesConv1d(
8, 2, kernel_size=1, sigma_init=0, padding_mode="random"
)
BayesConv1d(8, 2, kernel_size=1, sigma_init=0, padding_mode="random")


class TestBayesConv2d:
Expand All @@ -115,9 +111,7 @@ def test_conv2(self, img_input_odd: torch.Tensor) -> None:
layer.sample()

def test_conv2_even(self, img_input_even: torch.Tensor) -> None:
layer = BayesConv2d(
10, 2, kernel_size=1, sigma_init=0, padding_mode="reflect"
)
layer = BayesConv2d(10, 2, kernel_size=1, sigma_init=0, padding_mode="reflect")
print(layer)
out = layer(img_input_even)
assert out.shape == torch.Size([8, 2, 3, 3])
Expand All @@ -141,9 +135,7 @@ def test_conv3(self, cube_input_odd: torch.Tensor) -> None:
assert out.shape == torch.Size([1, 2, 3, 3, 3])

def test_conv3_even(self, cube_input_even: torch.Tensor) -> None:
layer = BayesConv3d(
10, 2, kernel_size=1, sigma_init=0, padding_mode="reflect"
)
layer = BayesConv3d(10, 2, kernel_size=1, sigma_init=0, padding_mode="reflect")
print(layer)
out = layer(cube_input_even)
assert out.shape == torch.Size([2, 2, 3, 3, 3])
Expand Down Expand Up @@ -192,17 +184,13 @@ def test_conv2(self, img_input_odd: torch.Tensor) -> None:
out = layer(img_input_odd.repeat(4, 1, 1, 1))
assert out.shape == torch.Size([5 * 4, 2, 3, 3])

layer = LPBNNConv2d(
10, 2, kernel_size=1, num_estimators=4, bias=False, gamma=False
)
layer = LPBNNConv2d(10, 2, kernel_size=1, num_estimators=4, bias=False, gamma=False)
layer = layer.eval()
out = layer(img_input_odd.repeat(4, 1, 1, 1))
assert out.shape == torch.Size([5 * 4, 2, 3, 3])

def test_conv2_even(self, img_input_even: torch.Tensor) -> None:
layer = LPBNNConv2d(
10, 2, kernel_size=1, num_estimators=4, padding_mode="reflect"
)
layer = LPBNNConv2d(10, 2, kernel_size=1, num_estimators=4, padding_mode="reflect")
print(layer)
out = layer(img_input_even.repeat(4, 1, 1, 1))
assert out.shape == torch.Size([8 * 4, 2, 3, 3])
Expand Down
Loading