Skip to content

🐛 Fix OOD & Post Processing at the same time & other small changes #115

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Sep 29, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ docs/*/auto_tutorials/
*.out
docs/source/sg_execution_times.rst
test**/*.csv
pyrightconfig.json

# Byte-compiled / optimized / DLL files
__pycache__/
Expand Down
2 changes: 1 addition & 1 deletion docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
f"{datetime.now().year!s}, Adrien Lafage and Olivier Laurent"
)
author = "Adrien Lafage and Olivier Laurent"
release = "0.2.2.post0"
release = "0.2.2.post1"

# -- General configuration ---------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ build-backend = "flit_core.buildapi"

[project]
name = "torch_uncertainty"
version = "0.2.2.post0"
version = "0.2.2.post1"
authors = [
{ name = "ENSTA U2IS", email = "olivier.laurent@ensta-paris.fr" },
{ name = "Adrien Lafage", email = "adrienlafage@outlook.com" },
Expand Down
4 changes: 0 additions & 4 deletions torch_uncertainty/metrics/classification/risk_coverage.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,9 +147,7 @@ def plot(
ax.set_ylabel("Risk - Error Rate (%)", fontsize=16)
ax.set_xlim(0, 100)
ax.set_ylim(0, min(100, np.ceil(error_rates.max() * 100)))
ax.set_aspect("equal", "box")
ax.legend(loc="upper right")
fig.tight_layout()
return fig, ax


Expand Down Expand Up @@ -270,9 +268,7 @@ def plot(
ax.set_ylabel("Generalized Risk (%)", fontsize=16)
ax.set_xlim(0, 100)
ax.set_ylim(0, min(100, np.ceil(error_rates.max() * 100)))
ax.set_aspect("equal", "box")
ax.legend(loc="upper right")
fig.tight_layout()
return fig, ax


Expand Down
4 changes: 2 additions & 2 deletions torch_uncertainty/models/resnet/batched.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,7 +248,7 @@ def __init__(
self.layer4 = nn.Identity()
linear_multiplier = 4

self.dropout = nn.Dropout(p=dropout_rate)
self.final_dropout = nn.Dropout(p=dropout_rate)
self.pool = nn.AdaptiveAvgPool2d(output_size=1)
self.flatten = nn.Flatten(1)

Expand Down Expand Up @@ -297,7 +297,7 @@ def forward(self, x: Tensor) -> Tensor:
out = self.layer3(out)
out = self.layer4(out)
out = self.pool(out)
out = self.dropout(self.flatten(out))
out = self.final_dropout(self.flatten(out))
return self.linear(out)


Expand Down
4 changes: 2 additions & 2 deletions torch_uncertainty/models/resnet/lpbnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -258,7 +258,7 @@ def __init__(
self.layer4 = nn.Identity()
linear_multiplier = 4

self.dropout = nn.Dropout(p=dropout_rate)
self.final_dropout = nn.Dropout(p=dropout_rate)
self.pool = nn.AdaptiveAvgPool2d(output_size=1)
self.flatten = nn.Flatten(1)

Expand Down Expand Up @@ -309,7 +309,7 @@ def feats_forward(self, x: Tensor) -> Tensor:
out = self.layer3(out)
out = self.layer4(out)
out = self.pool(out)
return self.dropout(self.flatten(out))
return self.final_dropout(self.flatten(out))

def forward(self, x: Tensor) -> Tensor:
return self.linear(self.feats_forward(x))
Expand Down
4 changes: 2 additions & 2 deletions torch_uncertainty/models/resnet/masked.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,7 +262,7 @@ def __init__(
self.layer4 = nn.Identity()
linear_multiplier = 4

self.dropout = nn.Dropout(p=dropout_rate)
self.final_dropout = nn.Dropout(p=dropout_rate)
self.pool = nn.AdaptiveAvgPool2d(output_size=1)
self.flatten = nn.Flatten(1)

Expand Down Expand Up @@ -315,7 +315,7 @@ def forward(self, x: Tensor) -> Tensor:
out = self.layer4(out)

out = self.pool(out)
out = self.dropout(self.flatten(out))
out = self.final_dropout(self.flatten(out))
return self.linear(out)


Expand Down
4 changes: 2 additions & 2 deletions torch_uncertainty/models/resnet/packed.py
Original file line number Diff line number Diff line change
Expand Up @@ -315,7 +315,7 @@ def __init__(
self.layer4 = nn.Identity()
linear_multiplier = 4

self.dropout = nn.Dropout(p=dropout_rate)
self.final_dropout = nn.Dropout(p=dropout_rate)
self.pool = nn.AdaptiveAvgPool2d(output_size=1)
self.flatten = nn.Flatten(1)

Expand Down Expand Up @@ -374,7 +374,7 @@ def forward(self, x: Tensor) -> Tensor:
)

out = self.pool(out)
out = self.dropout(self.flatten(out))
out = self.final_dropout(self.flatten(out))
return self.linear(out)

def check_config(self, config: dict[str, Any]) -> bool:
Expand Down
5 changes: 3 additions & 2 deletions torch_uncertainty/models/resnet/std.py
Original file line number Diff line number Diff line change
Expand Up @@ -293,7 +293,7 @@ def __init__(
self.layer4 = nn.Identity()
linear_multiplier = 4

self.dropout = nn.Dropout(p=dropout_rate)
self.final_dropout = nn.Dropout(p=dropout_rate)
self.pool = nn.AdaptiveAvgPool2d(output_size=1)
self.flatten = nn.Flatten(1)

Expand Down Expand Up @@ -340,7 +340,7 @@ def feats_forward(self, x: Tensor) -> Tensor:
out = self.layer3(out)
out = self.layer4(out)
out = self.pool(out)
return self.dropout(self.flatten(out))
return self.final_dropout(self.flatten(out))

def forward(self, x: Tensor) -> Tensor:
return self.linear(self.feats_forward(x))
Expand Down Expand Up @@ -374,6 +374,7 @@ def resnet(
activation_fn (Callable, optional): Activation function. Defaults to
``torch.nn.functional.relu``.
normalization_layer (nn.Module, optional): Normalization layer.
Defaults to ``torch.nn.BatchNorm2d``.

Returns:
_ResNet: The ResNet model.
Expand Down
25 changes: 20 additions & 5 deletions torch_uncertainty/models/wideresnet/batched.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ def __init__(
groups: int,
conv_bias: bool,
activation_fn: Callable,
normalization_layer: type[nn.Module],
) -> None:
super().__init__()
self.activation_fn = activation_fn
Expand All @@ -35,7 +36,7 @@ def __init__(
bias=conv_bias,
)
self.dropout = nn.Dropout2d(p=dropout_rate)
self.bn1 = nn.BatchNorm2d(planes)
self.bn1 = normalization_layer(planes)
self.conv2 = BatchConv2d(
planes,
planes,
Expand All @@ -46,7 +47,7 @@ def __init__(
groups=groups,
bias=conv_bias,
)
self.bn2 = nn.BatchNorm2d(planes)
self.bn2 = normalization_layer(planes)

self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
Expand Down Expand Up @@ -82,6 +83,7 @@ def __init__(
groups: int = 1,
style: Literal["imagenet", "cifar"] = "imagenet",
activation_fn: Callable = relu,
normalization_layer: type[nn.Module] = nn.BatchNorm2d,
) -> None:
super().__init__()
self.num_estimators = num_estimators
Expand Down Expand Up @@ -123,7 +125,7 @@ def __init__(
else:
raise ValueError(f"Unknown WideResNet style: {style}. ")

self.bn1 = nn.BatchNorm2d(num_stages[0])
self.bn1 = normalization_layer(num_stages[0])

if style == "imagenet":
self.optional_pool = nn.MaxPool2d(
Expand All @@ -142,6 +144,7 @@ def __init__(
groups=groups,
conv_bias=conv_bias,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)
self.layer2 = self._wide_layer(
_WideBasicBlock,
Expand All @@ -153,6 +156,7 @@ def __init__(
groups=groups,
conv_bias=conv_bias,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)
self.layer3 = self._wide_layer(
_WideBasicBlock,
Expand All @@ -164,9 +168,10 @@ def __init__(
groups=groups,
conv_bias=conv_bias,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)

self.dropout = nn.Dropout(p=dropout_rate)
self.final_dropout = nn.Dropout(p=dropout_rate)
self.pool = nn.AdaptiveAvgPool2d(output_size=1)
self.flatten = nn.Flatten(1)
self.linear = BatchLinear(
Expand All @@ -186,6 +191,7 @@ def _wide_layer(
groups: int,
conv_bias: bool,
activation_fn: Callable,
normalization_layer: type[nn.Module],
) -> nn.Module:
strides = [stride] + [1] * (int(num_blocks) - 1)
layers = []
Expand All @@ -201,6 +207,7 @@ def _wide_layer(
num_estimators=num_estimators,
groups=groups,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)
)
self.in_planes = planes
Expand All @@ -214,7 +221,7 @@ def feats_forward(self, x: Tensor) -> Tensor:
out = self.layer2(out)
out = self.layer3(out)
out = self.pool(out)
return self.dropout(self.flatten(out))
return self.final_dropout(self.flatten(out))

def forward(self, x: Tensor) -> Tensor:
return self.linear(self.feats_forward(x))
Expand All @@ -228,6 +235,8 @@ def batched_wideresnet28x10(
dropout_rate: float = 0.3,
groups: int = 1,
style: Literal["imagenet", "cifar"] = "imagenet",
activation_fn: Callable = relu,
normalization_layer: type[nn.Module] = nn.BatchNorm2d,
) -> _BatchWideResNet:
"""BatchEnsemble of Wide-ResNet-28x10.

Expand All @@ -241,6 +250,10 @@ def batched_wideresnet28x10(
groups (int): Number of groups in the convolutions. Defaults to ``1``.
style (bool, optional): Whether to use the ImageNet
structure. Defaults to ``True``.
activation_fn (Callable, optional): Activation function. Defaults to
``torch.nn.functional.relu``.
normalization_layer (nn.Module, optional): Normalization layer.
Defaults to ``torch.nn.BatchNorm2d``.

Returns:
_BatchWideResNet: A BatchEnsemble-style Wide-ResNet-28x10.
Expand All @@ -255,4 +268,6 @@ def batched_wideresnet28x10(
num_estimators=num_estimators,
groups=groups,
style=style,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)
31 changes: 23 additions & 8 deletions torch_uncertainty/models/wideresnet/masked.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ def __init__(
scale: float,
groups: int,
activation_fn: Callable,
normalization_layer: type[nn.Module],
) -> None:
super().__init__()
self.activation_fn = activation_fn
Expand All @@ -37,7 +38,7 @@ def __init__(
bias=conv_bias,
)
self.dropout = nn.Dropout2d(p=dropout_rate)
self.bn1 = nn.BatchNorm2d(planes)
self.bn1 = normalization_layer(planes)
self.conv2 = MaskedConv2d(
planes,
planes,
Expand All @@ -49,7 +50,7 @@ def __init__(
groups=groups,
bias=conv_bias,
)
self.bn2 = nn.BatchNorm2d(planes)
self.bn2 = normalization_layer(planes)

self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
Expand Down Expand Up @@ -87,6 +88,7 @@ def __init__(
groups: int = 1,
style: Literal["imagenet", "cifar"] = "imagenet",
activation_fn: Callable = relu,
normalization_layer: type[nn.Module] = nn.BatchNorm2d,
) -> None:
super().__init__()
self.num_estimators = num_estimators
Expand Down Expand Up @@ -126,7 +128,7 @@ def __init__(
else:
raise ValueError(f"Unknown WideResNet style: {style}. ")

self.bn1 = nn.BatchNorm2d(num_stages[0])
self.bn1 = normalization_layer(num_stages[0])

if style == "imagenet":
self.optional_pool = nn.MaxPool2d(
Expand All @@ -146,6 +148,7 @@ def __init__(
scale=scale,
groups=groups,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)
self.layer2 = self._wide_layer(
_WideBasicBlock,
Expand All @@ -158,6 +161,7 @@ def __init__(
scale=scale,
groups=groups,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)
self.layer3 = self._wide_layer(
_WideBasicBlock,
Expand All @@ -170,9 +174,10 @@ def __init__(
scale=scale,
groups=groups,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)

self.dropout = nn.Dropout(p=dropout_rate)
self.final_dropout = nn.Dropout(p=dropout_rate)
self.pool = nn.AdaptiveAvgPool2d(output_size=1)
self.flatten = nn.Flatten(1)

Expand All @@ -189,9 +194,10 @@ def _wide_layer(
dropout_rate: float,
stride: int,
num_estimators: int,
scale: float = 2.0,
groups: int = 1,
activation_fn: Callable = relu,
scale: float,
groups: int,
activation_fn: Callable,
normalization_layer: type[nn.Module],
) -> nn.Module:
strides = [stride] + [1] * (int(num_blocks) - 1)
layers = []
Expand All @@ -208,6 +214,7 @@ def _wide_layer(
scale=scale,
groups=groups,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)
)
self.in_planes = planes
Expand All @@ -221,7 +228,7 @@ def feats_forward(self, x: Tensor) -> Tensor:
out = self.layer2(out)
out = self.layer3(out)
out = self.pool(out)
return self.dropout(self.flatten(out))
return self.final_dropout(self.flatten(out))

def forward(self, x: Tensor) -> Tensor:
return self.linear(self.feats_forward(x))
Expand All @@ -236,6 +243,8 @@ def masked_wideresnet28x10(
dropout_rate: float = 0.3,
groups: int = 1,
style: Literal["imagenet", "cifar"] = "imagenet",
activation_fn: Callable = relu,
normalization_layer: type[nn.Module] = nn.BatchNorm2d,
) -> _MaskedWideResNet:
"""Masksembles of Wide-ResNet-28x10.

Expand All @@ -251,6 +260,10 @@ def masked_wideresnet28x10(
``1``.
style (bool, optional): Whether to use the ImageNet
structure. Defaults to ``True``.
activation_fn (Callable, optional): Activation function. Defaults to
``torch.nn.functional.relu``.
normalization_layer (nn.Module, optional): Normalization layer.
Defaults to ``torch.nn.BatchNorm2d``.

Returns:
_MaskedWideResNet: A Masksembles-style Wide-ResNet-28x10.
Expand All @@ -266,4 +279,6 @@ def masked_wideresnet28x10(
scale=scale,
groups=groups,
style=style,
activation_fn=activation_fn,
normalization_layer=normalization_layer,
)
Loading
Loading