Skip to content

A modular machine learning and deep learning pipeline for exploring, classifying, and forecasting GDP using World Bank economic indicators. Includes tasks for missing value imputation, dimensionality reduction, MLP classification, time-series forecasting with LSTM/CNN/Transformer, and VAE-based data augmentation.

Notifications You must be signed in to change notification settings

EASONTAN03/world-bank-gdp-forecasting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

World bank data project instruction

Set up the python env

  • conda env create -f environment.yml -- pytorch need to be manually installed with device preference (cuda/cpu)
  • conda avtivate wbd

Hyperparameters setting and operations.

  1. Task 1: Data Exploration and Missing Value Imputation

    • Hyperparameters: None
    • Run src/task1.py
  2. Task 2: Dimensionality Reduction and Clustering using Autoencoder

    • Hyperparameters:
      • seed
      • batch_sizes
      • epochs_list
      • learning_rates
      • dropout_options
      • latent_list
    • Run src/task2.py
  3. Task 3: GDP Classification Using MLP

    • Hyperparameters:
      • seed
      • batch_sizes
      • epochs_list
      • learning_rates
      • scoring_metric
      • k_folds
    • Run src/task3.py
  4. Task 4: Time-Series GDP Forecasting Using Deep Learning Models

    • Hyperparameters:
      • seed
      • models
      • batch_sizes
      • epochs_list
      • learning_rates
      • dropout_options
      • val_size
      • test_size
    • Run src/task4.py
  5. Task 5: Variational Autoencoder for Data Augmentation

    • Hyperparameters:
      • seed
      • batch_size
      • epochs
      • learning_rate
      • hidden_dim
      • latent_dim
      • dataset_timestamp
    • Run src/task5.py
  6. Task 6: GDP Forecasting with VAE-Augmented Data

    • Hyperparameters:
      • seed
      • models
      • batch_sizes
      • epochs_list
      • learning_rates
      • dropout_options
      • hidden_dim
      • latent_dim
      • timestamp_task4
      • timestamp_task5
    • Run src/task6.py

Collaborators: Tan Beng Seh and Ng Rou Yan

About

A modular machine learning and deep learning pipeline for exploring, classifying, and forecasting GDP using World Bank economic indicators. Includes tasks for missing value imputation, dimensionality reduction, MLP classification, time-series forecasting with LSTM/CNN/Transformer, and VAE-based data augmentation.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published