World bank data project instruction
- conda env create -f environment.yml -- pytorch need to be manually installed with device preference (cuda/cpu)
- conda avtivate wbd
-
Task 1: Data Exploration and Missing Value Imputation
- Hyperparameters: None
- Run src/task1.py
-
Task 2: Dimensionality Reduction and Clustering using Autoencoder
- Hyperparameters:
- seed
- batch_sizes
- epochs_list
- learning_rates
- dropout_options
- latent_list
- Run src/task2.py
- Hyperparameters:
-
Task 3: GDP Classification Using MLP
- Hyperparameters:
- seed
- batch_sizes
- epochs_list
- learning_rates
- scoring_metric
- k_folds
- Run src/task3.py
- Hyperparameters:
-
Task 4: Time-Series GDP Forecasting Using Deep Learning Models
- Hyperparameters:
- seed
- models
- batch_sizes
- epochs_list
- learning_rates
- dropout_options
- val_size
- test_size
- Run src/task4.py
- Hyperparameters:
-
Task 5: Variational Autoencoder for Data Augmentation
- Hyperparameters:
- seed
- batch_size
- epochs
- learning_rate
- hidden_dim
- latent_dim
- dataset_timestamp
- Run src/task5.py
- Hyperparameters:
-
Task 6: GDP Forecasting with VAE-Augmented Data
- Hyperparameters:
- seed
- models
- batch_sizes
- epochs_list
- learning_rates
- dropout_options
- hidden_dim
- latent_dim
- timestamp_task4
- timestamp_task5
- Run src/task6.py
- Hyperparameters:
Collaborators: Tan Beng Seh and Ng Rou Yan