- Allowed editors:
vi
,vim
,emacs
- All your files will be compiled on Ubuntu 20.04 LTS using
gcc
, using the options-Wall -Werror -Wextra -pedantic -std=gnu89
- All your files should end with a new line
- A
README.md
file, at the root of the folder of the project, is mandatory - Your code should use the
Betty
style. It will be checked using betty-style.pl and betty-doc.pl - You are not allowed to use global variables
- No more than 5 functions per file
- You are allowed to use the standard library
- In the following examples, the
main.c
files are shown as examples. You can use them to test your functions, but you don’t have to push them to your repo (if you do we won’t take them into account). We will use our ownmain.c
files at compilation. Ourmain.c
files might be different from the one shown in the examples - The prototypes of all your functions should be included in your header file called
binary_trees.h
- Don’t forget to push your header file
- All your header files should be include guarded
Please use the following data structures and types for binary trees. Don’t forget to include them in your header file.
/**
* struct binary_tree_s - Binary tree node
*
* @n: Integer stored in the node
* @parent: Pointer to the parent node
* @left: Pointer to the left child node
* @right: Pointer to the right child node
*/
struct binary_tree_s
{
int n;
struct binary_tree_s *parent;
struct binary_tree_s *left;
struct binary_tree_s *right;
};
typedef struct binary_tree_s binary_tree_t;
typedef struct binary_tree_s bst_t;
typedef struct binary_tree_s avl_t;
typedef struct binary_tree_s heap_t;
Note: For tasks 0 to 23 (included), you have to deal with simple binary trees. They are not BSTs, thus they don’t follow any kind of rule.
To match the examples in the tasks, you are given this function
This function is used only for visualization purposes. You don’t have to push it to your repo. It may not be used during the correction
Write a function that creates a binary tree node
- Prototype:
binary_tree_t *binary_tree_node(binary_tree_t *parent, int value);
- Where
parent
is a pointer to the parent node of the node to create - And
value
is the value to put in the new node - When created, a node does not have any child
- Your function must return a pointer to the new node, or
NULL
on failure
alex@/tmp/binary_trees$ cat 0-main.c
#include <stdlib.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->left->left = binary_tree_node(root->left, 6);
root->left->right = binary_tree_node(root->left, 16);
root->right = binary_tree_node(root, 402);
root->right->left = binary_tree_node(root->right, 256);
root->right->right = binary_tree_node(root->right, 512);
binary_tree_print(root);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 0-main.c 0-binary_tree_node.c -o 0-node
alex@/tmp/binary_trees$ ./0-node
.-------(098)-------.
.--(012)--. .--(402)--.
(006) (016) (256) (512)
alex@/tmp/binary_trees$
Write a function that inserts a node as the left-child of another node
- Prototype:
binary_tree_t *binary_tree_insert_left(binary_tree_t *parent, int value);
- Where
parent
is a pointer to the node to insert the left-child in - And
value
is the value to store in the new node - Your function must return a pointer to the created node, or
NULL
on failure or ifparent
isNULL
- If
parent
already has a left-child, the new node must take its place, and the old left-child must be set as the left-child of the new node.
alex@/tmp/binary_trees$ cat 1-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_print(root);
printf("\n");
binary_tree_insert_left(root->right, 128);
binary_tree_insert_left(root, 54);
binary_tree_print(root);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 1-main.c 1-binary_tree_insert_left.c 0-binary_tree_node.c -o 1-left
alex@/tmp/binary_trees$ ./1-left
.--(098)--.
(012) (402)
.--(098)-------.
.--(054) .--(402)
(012) (128)
alex@/tmp/binary_trees$
Write a function that inserts a node as the right-child of another node
- Prototype:
binary_tree_t *binary_tree_insert_right(binary_tree_t *parent, int value);
- Where
parent
is a pointer to the node to insert the right-child in - And
value
is the value to store in the new node - Your function must return a pointer to the created node, or
NULL
on failure or ifparent
isNULL
- If
parent
already has a right-child, the new node must take its place, and the old right-child must be set as the right-child of the new node.
alex@/tmp/binary_trees$ cat 2-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_print(root);
printf("\n");
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_print(root);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 2-main.c 2-binary_tree_insert_right.c 0-binary_tree_node.c -o 2-right
alex@/tmp/binary_trees$ ./2-right
.--(098)--.
(012) (402)
.-------(098)--.
(012)--. (128)--.
(054) (402)
alex@/tmp/binary_trees$
Write a function that deletes an entire binary tree
- Prototype:
void binary_tree_delete(binary_tree_t *tree);
- Where
tree
is a pointer to the root node of the tree to delete - If
tree
isNULL
, do nothing
alex@/tmp/binary_trees$ cat 3-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_print(root);
binary_tree_delete(root);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 3-main.c 3-binary_tree_delete.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 3-del
alex@/tmp/binary_trees$ valgrind ./3-del
==13264== Memcheck, a memory error detector
==13264== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==13264== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info
==13264== Command: ./3-del
==13264==
.-------(098)--.
(012)--. (128)--.
(054) (402)
==13264==
==13264== HEAP SUMMARY:
==13264== in use at exit: 0 bytes in 0 blocks
==13264== total heap usage: 9 allocs, 9 frees, 949 bytes allocated
==13264==
==13264== All heap blocks were freed -- no leaks are possible
==13264==
==13264== For counts of detected and suppressed errors, rerun with: -v
==13264== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
alex@/tmp/binary_trees$
Write a function that checks if a node is a leaf
- Prototype:
int binary_tree_is_leaf(const binary_tree_t *node);
- Where
node
is a pointer to the node to check - Your function must return
1
ifnode
is a leaf, otherwise0
- If
node
isNULL
, return0
alex@/tmp/binary_trees$ cat 4-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
int ret;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_print(root);
ret = binary_tree_is_leaf(root);
printf("Is %d a leaf: %d\n", root->n, ret);
ret = binary_tree_is_leaf(root->right);
printf("Is %d a leaf: %d\n", root->right->n, ret);
ret = binary_tree_is_leaf(root->right->right);
printf("Is %d a leaf: %d\n", root->right->right->n, ret);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 4-binary_tree_is_leaf.c 4-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 4-leaf
alex@/tmp/binary_trees$ ./4-leaf
.-------(098)--.
(012)--. (128)--.
(054) (402)
Is 98 a leaf: 0
Is 128 a leaf: 0
Is 402 a leaf: 1
alex@/tmp/binary_trees$
Write a function that checks if a given node is a root
- Prototype:
int binary_tree_is_root(const binary_tree_t *node);
- Where
node
is a pointer to the node to check - Your function must return
1
ifnode
is a root, otherwise0
- If
node
isNULL
, return0
alex@/tmp/binary_trees$ cat 5-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
int ret;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_print(root);
ret = binary_tree_is_root(root);
printf("Is %d a root: %d\n", root->n, ret);
ret = binary_tree_is_root(root->right);
printf("Is %d a root: %d\n", root->right->n, ret);
ret = binary_tree_is_root(root->right->right);
printf("Is %d a root: %d\n", root->right->right->n, ret);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 5-binary_tree_is_root.c 5-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 5-root
alex@/tmp/binary_trees$ ./5-root
.-------(098)--.
(012)--. (128)--.
(054) (402)
Is 98 a root: 1
Is 128 a root: 0
Is 402 a root: 0
alex@/tmp/binary_trees$
Write a function that goes through a binary tree using pre-order traversal
- Prototype:
void binary_tree_preorder(const binary_tree_t *tree, void (*func)(int));
- Where
tree
is a pointer to the root node of the tree to traverse - And
func
is a pointer to a function to call for each node. The value in the node must be passed as a parameter to this function. - If
tree
orfunc
isNULL
, do nothing
alex@/tmp/binary_trees$ cat 6-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* print_num - Prints a number
*
* @n: Number to be printed
*/
void print_num(int n)
{
printf("%d\n", n);
}
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
root->left->left = binary_tree_node(root->left, 6);
root->left->right = binary_tree_node(root->left, 56);
root->right->left = binary_tree_node(root->right, 256);
root->right->right = binary_tree_node(root->right, 512);
binary_tree_print(root);
binary_tree_preorder(root, &print_num);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 6-main.c 6-binary_tree_preorder.c 0-binary_tree_node.c -o 6-pre
alex@/tmp/binary_trees$ ./6-pre
.-------(098)-------.
.--(012)--. .--(402)--.
(006) (056) (256) (512)
98
12
6
56
402
256
512
alex@/tmp/binary_trees$
Write a function that goes through a binary tree using in-order traversal
- Prototype:
void binary_tree_inorder(const binary_tree_t *tree, void (*func)(int));
- Where
tree
is a pointer to the root node of the tree to traverse - And
func
is a pointer to a function to call for each node. The value in the node must be passed as a parameter to this function. - If
tree
orfunc
isNULL
, do nothing
alex@/tmp/binary_trees$ cat 7-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* print_num - Prints a number
*
* @n: Number to be printed
*/
void print_num(int n)
{
printf("%d\n", n);
}
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
root->left->left = binary_tree_node(root->left, 6);
root->left->right = binary_tree_node(root->left, 56);
root->right->left = binary_tree_node(root->right, 256);
root->right->right = binary_tree_node(root->right, 512);
binary_tree_print(root);
binary_tree_inorder(root, &print_num);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 7-main.c 7-binary_tree_inorder.c 0-binary_tree_node.c -o 7-in
alex@/tmp/binary_trees$ ./7-in
.-------(098)-------.
.--(012)--. .--(402)--.
(006) (056) (256) (512)
6
12
56
98
256
402
512
alex@/tmp/binary_trees$
Write a function that goes through a binary tree using post-order traversal
- Prototype:
void binary_tree_postorder(const binary_tree_t *tree, void (*func)(int));
- Where
tree
is a pointer to the root node of the tree to traverse - And
func
is a pointer to a function to call for each node. The value in the node must be passed as a parameter to this function. - If
tree
orfunc
isNULL
, do nothing
alex@/tmp/binary_trees$ cat 8-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* print_num - Prints a number
*
* @n: Number to be printed
*/
void print_num(int n)
{
printf("%d\n", n);
}
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
root->left->left = binary_tree_node(root->left, 6);
root->left->right = binary_tree_node(root->left, 56);
root->right->left = binary_tree_node(root->right, 256);
root->right->right = binary_tree_node(root->right, 512);
binary_tree_print(root);
binary_tree_postorder(root, &print_num);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 8-main.c 8-binary_tree_postorder.c 0-binary_tree_node.c -o 8-post
alex@/tmp/binary_trees$ ./8-post
.-------(098)-------.
.--(012)--. .--(402)--.
(006) (056) (256) (512)
6
56
12
256
512
402
98
alex@/tmp/binary_trees$
Write a function that measures the height of a binary tree
- Prototype:
size_t binary_tree_height(const binary_tree_t *tree);
- Where
tree
is a pointer to the root node of the tree to measure the height. - If
tree
isNULL
, your function must return0
alex@/tmp/binary_trees$ cat 9-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
size_t height;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_print(root);
height = binary_tree_height(root);
printf("Height from %d: %lu\n", root->n, height);
height = binary_tree_height(root->right);
printf("Height from %d: %lu\n", root->right->n, height);
height = binary_tree_height(root->left->right);
printf("Height from %d: %lu\n", root->left->right->n, height);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 9-binary_tree_height.c 9-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 9-height
alex@/tmp/binary_trees$ ./9-height
.-------(098)--.
(012)--. (128)--.
(054) (402)
Height from 98: 2
Height from 128: 1
Height from 54: 0
alex@/tmp/binary_trees$
Write a function that measures the depth of a node in a binary tree
- Prototype:
size_t binary_tree_depth(const binary_tree_t *tree);
- Where
tree
is a pointer to the node to measure the depth - If
tree
isNULL
, your function must return0
alex@/tmp/binary_trees$ cat 10-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
size_t depth;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_print(root);
depth = binary_tree_depth(root);
printf("Depth of %d: %lu\n", root->n, depth);
depth = binary_tree_depth(root->right);
printf("Depth of %d: %lu\n", root->right->n, depth);
depth = binary_tree_depth(root->left->right);
printf("Depth of %d: %lu\n", root->left->right->n, depth);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 10-binary_tree_depth.c 10-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 10-depth
alex@/tmp/binary_trees$ ./10-depth
.-------(098)--.
(012)--. (128)--.
(054) (402)
Depth of 98: 0
Depth of 128: 1
Depth of 54: 2
alex@/tmp/binary_trees$
Write a function that measures the size of a binary tree
- Prototype:
size_t binary_tree_size(const binary_tree_t *tree);
- Where
tree
is a pointer to the root node of the tree to measure the size - If
tree
isNULL
, the function must return0
alex@/tmp/binary_trees$ cat 11-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
size_t size;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_print(root);
size = binary_tree_size(root);
printf("Size of %d: %lu\n", root->n, size);
size = binary_tree_size(root->right);
printf("Size of %d: %lu\n", root->right->n, size);
size = binary_tree_size(root->left->right);
printf("Size of %d: %lu\n", root->left->right->n, size);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 11-binary_tree_size.c 11-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 11-size
alex@/tmp/binary_trees$ ./11-size
.-------(098)--.
(012)--. (128)--.
(054) (402)
Size of 98: 5
Size of 128: 2
Size of 54: 1
alex@/tmp/binary_trees$
Write a function that counts the leaves in a binary tree
- Prototype:
size_t binary_tree_leaves(const binary_tree_t *tree);
- Where
tree
is a pointer to the root node of the tree to count the number of leaves - If
tree
isNULL
, the function must return0
- A
NULL
pointer is not a leaf
alex@/tmp/binary_trees$ cat 12-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
size_t leaves;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_print(root);
leaves = binary_tree_leaves(root);
printf("Leaves in %d: %lu\n", root->n, leaves);
leaves = binary_tree_leaves(root->right);
printf("Leaves in %d: %lu\n", root->right->n, leaves);
leaves = binary_tree_leaves(root->left->right);
printf("Leaves in %d: %lu\n", root->left->right->n, leaves);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 12-binary_tree_leaves.c 12-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 12-leaves
alex@/tmp/binary_trees$ ./12-leaves
.-------(098)--.
(012)--. (128)--.
(054) (402)
Leaves in 98: 2
Leaves in 128: 1
Leaves in 54: 1
alex@/tmp/binary_trees$
Write a function that counts the nodes with at least 1 child in a binary tree
- Prototype:
size_t binary_tree_nodes(const binary_tree_t *tree);
- Where
tree
is a pointer to the root node of the tree to count the number of nodes - If
tree
isNULL
, the function must return0
- A
NULL
pointer is not a node
alex@/tmp/binary_trees$ cat 13-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
size_t nodes;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_print(root);
nodes = binary_tree_nodes(root);
printf("Nodes in %d: %lu\n", root->n, nodes);
nodes = binary_tree_nodes(root->right);
printf("Nodes in %d: %lu\n", root->right->n, nodes);
nodes = binary_tree_nodes(root->left->right);
printf("Nodes in %d: %lu\n", root->left->right->n, nodes);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 13-binary_tree_nodes.c 13-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 13-nodes
alex@/tmp/binary_trees$ ./13-nodes
.-------(098)--.
(012)--. (128)--.
(054) (402)
Nodes in 98: 3
Nodes in 128: 1
Nodes in 54: 0
alex@/tmp/binary_trees$
Write a function that measures the balance factor of a binary tree
- Prototype:
int binary_tree_balance(const binary_tree_t *tree);
- Where
tree
is a pointer to the root node of the tree to measure the balance factor - If
tree
isNULL
, return0
alex@/tmp/binary_trees$ cat 14-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
int balance;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
binary_tree_insert_left(root, 45);
binary_tree_insert_right(root->left, 50);
binary_tree_insert_left(root->left->left, 10);
binary_tree_insert_left(root->left->left->left, 8);
binary_tree_print(root);
balance = binary_tree_balance(root);
printf("Balance of %d: %+d\n", root->n, balance);
balance = binary_tree_balance(root->right);
printf("Balance of %d: %+d\n", root->right->n, balance);
balance = binary_tree_balance(root->left->left->right);
printf("Balance of %d: %+d\n", root->left->left->right->n, balance);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 14-binary_tree_balance.c 14-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c 1-binary_tree_insert_left.c -o 14-balance
alex@/tmp/binary_trees$ ./14-balance
.-------(098)--.
.-------(045)--. (128)--.
.--(012)--. (050) (402)
.--(010) (054)
(008)
Balance of 98: +2
Balance of 128: -1
Balance of 54: +0
alex@/tmp/binary_trees$
Write a function that checks if a binary tree is full
- Prototype:
int binary_tree_is_full(const binary_tree_t *tree);
- Where
tree
is a pointer to the root node of the tree to check - If
tree
isNULL
, your function must return0
alex@/tmp/binary_trees$ cat 15-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
int full;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
root->left->left = binary_tree_node(root->left, 10);
binary_tree_print(root);
full = binary_tree_is_full(root);
printf("Is %d full: %d\n", root->n, full);
full = binary_tree_is_full(root->left);
printf("Is %d full: %d\n", root->left->n, full);
full = binary_tree_is_full(root->right);
printf("Is %d full: %d\n", root->right->n, full);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 15-binary_tree_is_full.c 15-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 15-full
alex@/tmp/binary_trees$ ./15-full
.-------(098)--.
.--(012)--. (128)--.
(010) (054) (402)
Is 98 full: 0
Is 12 full: 1
Is 128 full: 0
alex@/tmp/binary_trees$
Write a function that checks if a binary tree is perfect
- Prototype:
int binary_tree_is_perfect(const binary_tree_t *tree);
- Where
tree
is a pointer to the root node of the tree to check - If
tree
isNULL
, your function must return0
alex@/tmp/binary_trees$ cat 16-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
int perfect;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
binary_tree_insert_right(root->left, 54);
binary_tree_insert_right(root, 128);
root->left->left = binary_tree_node(root->left, 10);
root->right->left = binary_tree_node(root->right, 10);
binary_tree_print(root);
perfect = binary_tree_is_perfect(root);
printf("Perfect: %d\n\n", perfect);
root->right->right->left = binary_tree_node(root->right->right, 10);
binary_tree_print(root);
perfect = binary_tree_is_perfect(root);
printf("Perfect: %d\n\n", perfect);
root->right->right->right = binary_tree_node(root->right->right, 10);
binary_tree_print(root);
perfect = binary_tree_is_perfect(root);
printf("Perfect: %d\n", perfect);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 16-binary_tree_is_perfect.c 16-main.c 0-binary_tree_node.c 2-binary_tree_insert_right.c -o 16-perfect
alex@/tmp/binary_trees$ ./16-perfect
.-------(098)-------.
.--(012)--. .--(128)--.
(010) (054) (010) (402)
Perfect: 1
.-------(098)-------.
.--(012)--. .--(128)-------.
(010) (054) (010) .--(402)
(010)
Perfect: 0
.-------(098)-------.
.--(012)--. .--(128)-------.
(010) (054) (010) .--(402)--.
(010) (010)
Perfect: 0
alex@/tmp/binary_trees$
Write a function that finds the sibling of a node
- Prototype:
binary_tree_t *binary_tree_sibling(binary_tree_t *node);
- Where
node
is a pointer to the node to find the sibling - Your function must return a pointer to the sibling node
- If
node
isNULL
or the parent isNULL
, returnNULL
- If
node
has no sibling, returnNULL
alex@/tmp/binary_trees$ cat 17-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
binary_tree_t *sibling;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 128);
root->left->right = binary_tree_node(root->left, 54);
root->right->right = binary_tree_node(root->right, 402);
root->left->left = binary_tree_node(root->left, 10);
root->right->left = binary_tree_node(root->right, 110);
root->right->right->left = binary_tree_node(root->right->right, 200);
root->right->right->right = binary_tree_node(root->right->right, 512);
binary_tree_print(root);
sibling = binary_tree_sibling(root->left);
printf("Sibling of %d: %d\n", root->left->n, sibling->n);
sibling = binary_tree_sibling(root->right->left);
printf("Sibling of %d: %d\n", root->right->left->n, sibling->n);
sibling = binary_tree_sibling(root->left->right);
printf("Sibling of %d: %d\n", root->left->right->n, sibling->n);
sibling = binary_tree_sibling(root);
printf("Sibling of %d: %p\n", root->n, (void *)sibling);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 17-main.c 17-binary_tree_sibling.c 0-binary_tree_node.c -o 17-sibling
alex@/tmp/binary_trees$ ./17-sibling
.-------(098)-------.
.--(012)--. .--(128)-------.
(010) (054) (110) .--(402)--.
(200) (512)
Sibling of 12: 128
Sibling of 110: 402
Sibling of 54: 10
Sibling of 98: (nil)
alex@/tmp/binary_trees$
Write a function that finds the uncle of a node
- Prototype:
binary_tree_t *binary_tree_uncle(binary_tree_t *node);
- Where
node
is a pointer to the node to find the uncle - Your function must return a pointer to the uncle node
- If
node
isNULL
, returnNULL
- If
node
has no uncle, returnNULL
alex@/tmp/binary_trees$ cat 18-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
binary_tree_t *uncle;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 128);
root->left->right = binary_tree_node(root->left, 54);
root->right->right = binary_tree_node(root->right, 402);
root->left->left = binary_tree_node(root->left, 10);
root->right->left = binary_tree_node(root->right, 110);
root->right->right->left = binary_tree_node(root->right->right, 200);
root->right->right->right = binary_tree_node(root->right->right, 512);
binary_tree_print(root);
uncle = binary_tree_uncle(root->right->left);
printf("Uncle of %d: %d\n", root->right->left->n, uncle->n);
uncle = binary_tree_uncle(root->left->right);
printf("Uncle of %d: %d\n", root->left->right->n, uncle->n);
uncle = binary_tree_uncle(root->left);
printf("Uncle of %d: %p\n", root->left->n, (void *)uncle);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 18-main.c 18-binary_tree_uncle.c 0-binary_tree_node.c -o 18-uncle
alex@/tmp/binary_trees$ ./18-uncle
.-------(098)-------.
.--(012)--. .--(128)-------.
(010) (054) (110) .--(402)--.
(200) (512)
Uncle of 110: 12
Uncle of 54: 128
Uncle of 12: (nil)
alex@/tmp/binary_trees$
Write a function that finds the lowest common ancestor of two nodes
- Prototype:
binary_tree_t *binary_trees_ancestor(const binary_tree_t *first, const binary_tree_t *second);
- Where
first
is a pointer to the first node - And
second
is a pointer to the second node - Your function must return a pointer to the lowest common ancestor node of the two given nodes
- If no common ancestor was found, your function must return
NULL
alex@/tmp/binary_trees$ cat 100-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* launch_test - Test ancestor function and print informations
*
* @n1: First node
* @n2: Second node
*/
void launch_test(binary_tree_t *n1, binary_tree_t *n2)
{
binary_tree_t *ancestor;
ancestor = binary_trees_ancestor(n1, n2);
printf("Ancestor of [%d] & [%d]: ", n1->n, n2->n);
if (!ancestor)
printf("(nil)\n");
else
printf("%d\n", ancestor->n);
}
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
root->left->right = binary_tree_node(root->left, 54);
root->right->right = binary_tree_node(root->right, 128);
root->left->left = binary_tree_node(root->left, 10);
root->right->left = binary_tree_node(root->right, 45);
root->right->right->left = binary_tree_node(root->right->right, 92);
root->right->right->right = binary_tree_node(root->right->right, 65);
binary_tree_print(root);
launch_test(root->left, root->right);
launch_test(root->right->left, root->right->right->right);
launch_test(root->right->right, root->right->right->right);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 100-main.c 100-binary_trees_ancestor.c 0-binary_tree_node.c -o 100-ancestor
alex@/tmp/binary_trees$ ./100-ancestor
.-------(098)-------.
.--(012)--. .--(402)-------.
(010) (054) (045) .--(128)--.
(092) (065)
Ancestor of [12] & [402]: 98
Ancestor of [45] & [65]: 402
Ancestor of [128] & [65]: 128
alex@/tmp/binary_trees$
Write a function that goes through a binary tree using level-order traversal
- Prototype:
void binary_tree_levelorder(const binary_tree_t *tree, void (*func)(int));
- Where
tree
is a pointer to the root node of the tree to traverse - And
func
is a pointer to a function to call for each node. The value in the node must be passed as a parameter to this function. - If
tree
orfunc
isNULL
, do nothing
alex@/tmp/binary_trees$ cat 101-main.c
#include <stdlib.h>
#include <stdio.h>
#include "binary_trees.h"
/**
* print_num - Prints a number
*
* @n: Number to be printed
*/
void print_num(int n)
{
printf("%d\n", n);
}
/**
* main - Entry point
*
* Return: Always 0 (Success)
*/
int main(void)
{
binary_tree_t *root;
root = binary_tree_node(NULL, 98);
root->left = binary_tree_node(root, 12);
root->right = binary_tree_node(root, 402);
root->left->left = binary_tree_node(root->left, 6);
root->left->right = binary_tree_node(root->left, 56);
root->right->left = binary_tree_node(root->right, 256);
root->right->right = binary_tree_node(root->right, 512);
binary_tree_print(root);
binary_tree_levelorder(root, &print_num);
binary_tree_delete(root);
return (0);
}
alex@/tmp/binary_trees$ gcc -Wall -Wextra -Werror -pedantic binary_tree_print.c 101-main.c 101-binary_tree_levelorder.c 0-binary_tree_node.c 3-binary_tree_delete.c -o 101-lvl
alex@/tmp/binary_trees$ valgrind ./101-lvl
==23445== Memcheck, a memory error detector
==23445== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==23445== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info
==23445== Command: ./101-lvl
==23445==
.-------(098)-------.
.--(012)--. .--(402)--.
(006) (056) (256) (512)
98
12
402
6
56
256
512
==23445==
==23445== HEAP SUMMARY:
==23445== in use at exit: 0 bytes in 0 blocks
==23445== total heap usage: 19 allocs, 19 frees, 1,197 bytes allocated
==23445==
==23445== All heap blocks were freed -- no leaks are possible
==23445==
==23445== For counts of detected and suppressed errors, rerun with: -v
==23445== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
alex@/tmp/binary_trees$
What are the average time complexities of those operations on a Binary Search Tree (one answer per line):
- Inserting the value
n
- Removing the node with the value
n
- Searching for a node in a BST of size n
What are the average time complexities of those operations on an AVL Tree (one answer per line):
- Inserting the value
n
- Removing the node with the value
n
- Searching for a node in an AVL tree of size n
What are the average time complexities of those operations on a Binary Heap (one answer per line):
- Inserting the value
n
- Extracting the root node
- Searching for a node in a binary heap of size n