Skip to content

AgenticX is an advanced framework for building and deploying Agentic AI applications. It provides a flexible and extensible architecture to easily integrate Agentic AI with various applications like Agentic RAG and Agentic Workflows, empowering developers to build next-generation intelligent applications.

License

Notifications You must be signed in to change notification settings

DemonDamon/AgenticX

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

AgenticX: Unified Multi-Agent Framework

AgenticX Logo

Python License: Apache-2.0 Documentation

A unified, scalable, production-ready multi-agent application development framework

Features β€’ Quick Start β€’ Examples β€’ Architecture β€’ Progress


🌍 Language / 语言: English | δΈ­ζ–‡


🎯 Vision

AgenticX aims to create a unified, scalable, production-ready multi-agent application development framework, empowering developers to build everything from simple automation assistants to complex collaborative intelligent agent systems.

✨ Core Features

πŸ”§ Core Framework (Completed)

  • πŸ€– Agent Core: Agent execution engine based on 12-Factor Agents methodology
  • πŸ”— Orchestration Engine: Graph-based orchestration engine supporting complex workflows, conditional routing, and parallel execution
  • πŸ› οΈ Tool System: Unified tool interface supporting function decorators, remote tools (MCP), and built-in toolsets
  • 🧠 Memory System: Deep integration with Mem0 for long-term memory, supporting arbitrary LLM models
  • πŸ’¬ Communication Protocol: A2A inter-agent communication, MCP resource access protocol
  • βœ… Task Validation: Pydantic-based output parsing and auto-repair

πŸ” Enterprise-Grade Monitoring (Completed)

  • πŸ“Š Observability: Complete callback system, real-time monitoring, trajectory analysis
  • πŸ“ˆ Performance Monitoring: Real-time metrics collection, Prometheus integration, system monitoring
  • πŸ” Trajectory Analysis: Execution path tracing, failure analysis, performance bottleneck identification
  • πŸ“ Data Export: Multi-format export (JSON/CSV/Prometheus), time series analysis

πŸŽ›οΈ Developer Experience (Planned)

  • πŸ–₯️ CLI Tools: Command-line tools for project creation, deployment, and monitoring
  • πŸ“± Web UI: Visual agent management and monitoring interface
  • πŸ”Œ IDE Integration: VS Code extension, Jupyter kernel support

πŸ”’ Enterprise Security (Planned)

  • πŸ” Security Sandbox: Secure code execution environment and resource isolation
  • πŸ‘₯ Multi-tenancy: RBAC permission control, data isolation
  • βœ‹ Human Approval: Human-in-the-loop workflows, risk control

πŸš€ Quick Start

Basic Installation

# Clone repository
git clone https://github.com/DemonDamon/AgenticX.git
cd AgenticX

# Install dependencies
pip install -r requirements.txt

# Set environment variables
export OPENAI_API_KEY="your-api-key"

Create Your First Agent

from agenticx import Agent, Task, AgentExecutor
from agenticx.llms import OpenAIProvider

# Create agent
agent = Agent(
    id="data-analyst",
    name="Data Analyst",
    role="Data Analysis Expert", 
    goal="Help users analyze and understand data",
    organization_id="my-org"
)

# Create task
task = Task(
    id="analysis-task",
    description="Analyze sales data trends",
    expected_output="Detailed analysis report"
)

# Configure LLM
llm = OpenAIProvider(model="gpt-4")

# Execute task
executor = AgentExecutor(agent=agent, llm=llm)
result = executor.run(task)
print(result)

Tool Usage Example

from agenticx.tools import tool

@tool
def calculate_sum(x: int, y: int) -> int:
    """Calculate the sum of two numbers"""
    return x + y

@tool  
def search_web(query: str) -> str:
    """Search web information"""
    return f"Search results: {query}"

# Agents will automatically invoke these tools

πŸ“š Complete Examples

We provide rich examples demonstrating various framework capabilities:

πŸ€– Agent Core (M5)

Single Agent Example

# Basic agent usage
python examples/m5_agent_demo.py
  • Demonstrates basic agent creation and execution
  • Tool invocation and error handling
  • Event-driven execution flow

Multi-Agent Collaboration

# Multi-agent collaboration example
python examples/m5_multi_agent_demo.py
  • Multi-agent collaboration patterns
  • Task distribution and result aggregation
  • Inter-agent communication

πŸ”— Orchestration & Validation (M6 & M7)

Simple Workflow

# Basic workflow orchestration
python examples/m6_m7_simple_demo.py
  • Workflow creation and execution
  • Task output parsing and validation
  • Conditional routing and error handling

Complex Workflow

# Complex workflow orchestration
python examples/m6_m7_comprehensive_demo.py
  • Complex workflow graph structures
  • Parallel execution and conditional branching
  • Complete lifecycle management

πŸ’¬ Agent Communication (M8)

A2A Protocol Demo

# Inter-agent communication protocol
python examples/m8_a2a_demo.py
  • Agent-to-Agent communication protocol
  • Distributed agent systems
  • Service discovery and skill invocation

πŸ“Š Observability Monitoring (M9)

Complete Monitoring Demo

# Observability module demo
python examples/m9_observability_demo.py
  • Real-time performance monitoring
  • Execution trajectory analysis
  • Failure analysis and recovery recommendations
  • Data export and report generation

🧠 Memory System

Basic Memory Usage

# Memory system example
python examples/memory_example.py
  • Long-term memory storage and retrieval
  • Context memory management

Healthcare Scenario

# Healthcare memory scenario
python examples/mem0_healthcare_example.py  
  • Medical knowledge memory and application
  • Personalized patient information management

πŸ‘€ Human-in-the-Loop

Human Intervention Flow

# Human-in-the-loop example
python examples/human_in_the_loop_example.py
  • Human approval workflows
  • Human-machine collaboration patterns
  • Risk control mechanisms

Detailed documentation: examples/README_HITL.md

πŸ’¬ LLM Integration

Chatbot

# LLM chat example
python examples/llm_chat_example.py
  • Multi-model support demonstration
  • Streaming response handling
  • Cost control and monitoring

πŸ”’ Security Sandbox

Code Execution Sandbox

# Micro-sandbox example
python examples/microsandbox_example.py
  • Secure code execution environment
  • Resource limits and isolation

Technical blog: examples/microsandbox_blog.md

πŸ—οΈ Technical Architecture

graph TD
    subgraph "User Interface Layer"
        SDK[Python SDK]
        CLI[CLI Tools]
        UI[Web UI]
    end

    subgraph "Core Framework Layer"
        subgraph "Orchestration Engine"
            Orchestrator[Workflow Orchestrator]
        end
        subgraph "Execution Engine"
            AgentExecutor[Agent Executor]
            TaskValidator[Task Validator]
        end
        subgraph "Core Components"
            Agent[Agent]
            Task[Task]
            Tool[Tool]
            Memory[Memory]
            LLM[LLM Provider]
        end
    end

    subgraph "Platform Services Layer"
        subgraph "Observability"
            Monitoring[Monitoring System]
        end
        subgraph "Communication Protocols"
            Protocols[Protocol Handler]
        end
        subgraph "Security Governance"
            Security[Security Service]
        end
    end

    SDK --> Orchestrator
    Orchestrator --> AgentExecutor
    AgentExecutor --> Agent
    Agent --> Tool
    Agent --> Memory
    Agent --> LLM
    AgentExecutor --> Monitoring
    Agent --> Protocols
Loading

πŸ“ˆ Development Progress

βœ… Completed Modules (M1-M9)

Module Status Description
M1 βœ… Core Abstraction Layer - Basic data structures like Agent, Task, Tool, Workflow
M2 βœ… LLM Service Layer - Unified LLM interface based on LiteLLM, supporting 100+ models
M3 βœ… Tool System - Function decorators, MCP remote tools, built-in toolsets
M4 βœ… Memory System - Deep integration with Mem0, supporting custom LLM
M5 βœ… Agent Core - Complete think-act loop, event-driven architecture
M6 βœ… Task Validation - Pydantic-based output parsing and auto-repair
M7 βœ… Orchestration Engine - Graph-based workflows, conditional routing, parallel execution
M8 βœ… Communication Protocols - A2A agent communication, MCP resource access
M9 βœ… Observability - Complete monitoring, trajectory analysis, performance metrics

πŸ”„ Planned Modules (M10-M13)

Module Status Description
M10 🚧 Developer Experience - CLI, Web UI, IDE integration
M11 🚧 Enterprise Security - Multi-tenancy, RBAC, security sandbox
M12 🚧 Agent Evolution - Architecture search, knowledge distillation
M13 🚧 Knowledge Hub - Enterprise data connection, unified search

🌟 Core Advantages

  • 🎯 Unified Abstraction: Clear and consistent core abstractions, avoiding conceptual confusion
  • πŸ”Œ Pluggable Architecture: All components are replaceable, avoiding vendor lock-in
  • πŸ“Š Enterprise-Grade Monitoring: Complete observability, production-ready
  • πŸ›‘οΈ Security First: Built-in security mechanisms and multi-tenant support
  • πŸš€ High Performance: Optimized execution engine and concurrent processing
  • πŸ“š Rich Ecosystem: Complete toolset and example library

πŸ› οΈ System Requirements

  • Python: 3.10+
  • Memory: 4GB+ RAM recommended
  • System: Windows / Linux / macOS
  • Dependencies: See requirements.txt

🀝 Contributing

We welcome community contributions! Please refer to:

  1. Submit Issues to report bugs or request features
  2. Fork the project and create feature branches
  3. Submit Pull Requests, ensuring all tests pass
  4. Participate in code reviews and discussions

πŸ“„ License

This project is licensed under the Apache License 2.0 - see LICENSE file for details

⭐ Star History

Star History Chart


🌟 If AgenticX helps you, please give us a Star!

GitHub β€’ Documentation β€’ Examples β€’ Discussions

About

AgenticX is an advanced framework for building and deploying Agentic AI applications. It provides a flexible and extensible architecture to easily integrate Agentic AI with various applications like Agentic RAG and Agentic Workflows, empowering developers to build next-generation intelligent applications.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages