We aim to build a machine learning-powered fraud detection and monitoring dashboard using IBM Synthetic Datasets for Core Banking and Money Laundering.
app/
: live dashboard code (Streamlit)data/
: raw and processed datasetsnotebooks/
: Jupyter exploration and model experimentsscripts/
: reusable codereports/
: slides and visuals
- Detect high-risk transactions (e.g., laundering, check fraud)
- Build an interactive dashboard for transaction monitoring
- Demonstrate real-time fraud flagging capability
Python, Scikit-learn, Pandas, Streamlit, GitHub, AWS
- Delphin Kaduli
- Tycho Janssen
- Solomon Pinto.
git https://github.com/DelphinKdl/CUA-MDA-Capstone-BaaS-Risk-Monitoring.git
python -m venv .venv
source .venv/bin/activate # on mac on window is .\.venv\Scripts\activate
pip install -r requirements.txt