Skip to content

DataSoftcoAI/athena-labs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🔷 VGT-Core: Multi-Head Geometric Attention for Vision Graphs

Developed by Dr. Abdulmajeed Nomman & Athena AGI Research Lab – Stanford University

VGT-Core is a Python module that implements multi-head geometric attention over graphs extracted from visual data (e.g., images, scenes). It features flexible edge modeling, geometric disentanglers, and scalable architecture for learning structured patterns in vision.


🚀 Features

  • ✅ Multi-head attention with independent geometric edge modules
  • 🧠 GeometryDisentangler for per-head pattern specialization
  • 🔍 Modular utility toolkit: edge normalization, attention diversity loss, visualization
  • ⚙️ Ready for PyTorch training pipelines
  • 🔁 Designed for explainability and fine-grained pattern analysis

📦 Installation

pip install vgt-core

Or from source:

git clone https://github.com/DataSoftcoAI/athena-labs
cd vgt_core_pkg
pip install .

🧪 Quick Example

from vgt_core.core.vgt_core_v0_3 import VGTCoreV03
import torch

# Sample inputs
N, D, H = 12, 16, 4
node_features = torch.randn(N, D)
edge_features = torch.randn(N, N, 4)
adj_mask = torch.ones(N, N)

# Initialize model
model = VGTCoreV03(embed_dim=D, num_heads=H, disentangle=True)

# Forward pass
output, attn_weights = model(node_features, edge_features, adj_mask)

🛠 Utilities

Module Function
EdgeNormalizer Normalize distance/angle edge features
AttentionDiversityLoss Enforce head-level specialization
GeometryDataSynthesizer Generate synthetic geometric test images
AttentionVisualizer Render head-wise graph attention maps

🧠 Citation / Academic Use

If used in research, cite as:

@inproceedings{nomman2025vgt,
  title={Disentangled Geometric Attention for Structured Visual Reasoning},
  author={Nomman, Abdulmajeed and Athena AGI Team},
  year={2025},
  note={Preprint: arXiv & CVPR 2026 Submission}
}

📜 License

Apache 2.0 — Free for academic and commercial use with attribution.


“Every pattern in nature has geometry. Every geometry tells a story worth learning by machines.” — Athena


Mini SDK:

🧪 Quick Start SDK

We provide a minimal package for experimentation and prototyping.

🔗 Download Mini SDK (.zip)

It includes:

  • ✅ Core multi-head attention model
  • ⚙️ Edge normalization utility
  • 🧪 Minimal test script

Perfect for research notebooks, classroom demos, or prototyping new attention heads.


Old Version:

athena-labs

Athena labs(AGI)

VGT - Vision Geometry Transformer

Multi-Head Geometric Attention for Vision-based Graph Models
Developed by Dr. Abdulmajeed Nomman and Athena Research Team


📌 Overview

VGT is a PyTorch module implementing a Multi-Head Geometric Attention mechanism. It is designed for graph-based computer vision models that represent images as spatial graphs (keypoints and geometric relations).

This package is part of the VGT-Core v0.2 project.


🔍 Key Features

  • Multi-head attention over image-based graphs
  • Learnable edge embeddings (distance, angle, orientation)
  • LayerNorm + Dropout for stability
  • Modular design, easy integration with GNN pipelines
  • Ideal for shape analysis, sketch recognition, or structural vision tasks

🛠 Installation

pip install vgt

Or from source:

git clone https://github.com/DataSoftcoAI/athena-labs/VGT-Core-v0.2
cd VGT-Core-v0.2
pip install .

🚀 Usage

from vgt.multihead_geometric_attention import MultiHeadGeometricAttention

model = MultiHeadGeometricAttention(embed_dim=16, num_heads=4)

output, attn_weights = model(
    node_features,      # Tensor [N, D]
    edge_features,      # Tensor [N, N, 4]
    adj_mask            # Tensor [N, N] (binary mask)
)

📊 Input Format

  • node_features: Features for each keypoint/node in the image.
  • edge_features: Geometric relations (distance, angle, cos, sin).
  • adj_mask: Binary adjacency matrix representing graph connectivity.

🧠 Research Applications

  • Structural image classification
  • Sketch-based search and retrieval
  • Scene graph modeling
  • Robotics: object part understanding
  • Human pose as graph with geometric links

📚 Citation

If you use this package in your research, please cite:

@software{vgt2025,
  author = {Abdulmajeed Nomman , Athena (AGI) Team},
  title = {VGT - Vision Geometry Transformer},
  year = {2025},
  url = {https://github.com/DataSoftcoAI/athena-labs/VGT-Core-v0.2}
}

🔗 Project Repository

GitHub Repository → VGT-Core v0.2


"لكل عين صناعية... عدسة ترى من زاوية مختلفة، ومعًا نرى بوضوح أكثر." — أثينا

About

Athena labs(AGI)

Resources

License

Stars

Watchers

Forks

Packages

No packages published