This project predicts weather parameters (like humidity, rainfall, etc.) using both Bayesian Networks (pgmpy) and Neural Networks (PyTorch). It includes MLflow for experiment tracking and Prometheus for monitoring.
- Name:
weatherAUS.csv
- Source: Kaggle - Australian Weather Dataset
- MinTemp, MaxTemp, Rainfall, WindGustSpeed, WindSpeed9am, WindSpeed3pm
- Humidity9am, Humidity3pm, Pressure9am, Pressure3pm
- Temp9am, Temp3pm, RainToday, RainTomorrow
- Learns structure using HillClimbSearch
- Parameters via MaximumLikelihoodEstimator
- Predicts missing values
- Multi-layer Feedforward Network
- Hyperparameter tuning using K-Fold Cross-Validation
- Tracks best hyperparameters and MSE
pip install -r requirements.txt
python newBayesian.py
mlflow ui --port 5000
Correlation Matrix
Feature Distributions
Prediction vs Actual Plots
Error Histograms
Python 🐍
PyTorch 🔥
pgmpy 📊
MLflow 🧪
Prometheus 📡
Pandas, NumPy, Seaborn, Scikit-Learn
feel free to fork and made changes to this code