Breaking Changes
- Upgraded to SB3 >= 2.6.0
- Refactored hyperparameter optimization. The Optuna Journal storage backend is now supported (recommended default) and you can easily load tuned hyperparameter via the new
--trial-id
argument oftrain.py
.
For example, optimize using the journal storage:
python train.py --algo ppo --env Pendulum-v1 -n 40000 --study-name demo --storage logs/demo.log --sampler tpe --n-evaluations 2 --optimize --no-optim-plots
Visualize live using optuna-dashboard
optuna-dashboard logs/demo.log
Load hyperparameters from trial number 21 and train an agent with it:
python train.py --algo ppo --env Pendulum-v1 --study-name demo --storage logs/demo.log --trial-id 21
New Features
- Save the exact command line used to launch a training
- Added support for special vectorized env (e.g. Brax, IsaacSim) by allowing to override the
VecEnv
class use to instantiate the env in theExperimentManager
- Allow to disable auto-logging by passing
--log-interval -2
(useful when logging things manually) - Added Gymnasium v1.1 support
Bug fixes
- Fixed use of old HF api in
get_hf_trained_models()
Other
scripts/parse_study.py
is now deprecated because of the new hyperparameter optimization scripts
Full Changelog: v2.5.0...v2.6.0