Skip to content

Fine-tuned 4-bit LoRA adapter for LLaMA 3 using Alpaca-style and QLoRA-grounded instructions, built with Unsloth for fast local training.

License

Notifications You must be signed in to change notification settings

Cre4T3Tiv3/unsloth-llama3-alpaca-lora

Repository files navigation

Demo GIF

Instruction-tuned LoRA adapter for LLaMA 3 8B using QLoRA + Alpaca-style prompts, trained with Unsloth.

HF Model HF Demo Space GitHub Stars License ByteStack Labs


Overview

This repo hosts the training, evaluation, and inference pipeline for:

Cre4T3Tiv3/unsloth-llama3-alpaca-lora

A 4-bit QLoRA LoRA adapter trained on:

Core Stack

  • Base Model: unsloth/llama-3-8b-bnb-4bit
  • Adapter Format: LoRA (merged post-training)
  • Training Framework: Unsloth + HuggingFace PEFT
  • Training Infra: A100 (40GB), 4-bit quantization

Intended Use

This adapter is purpose-built for:

  • Instruction-following LLM tasks
  • Low-resource, local inference (4-bit, merged LoRA)
  • Agentic tools and CLI assistants
  • Educational demos (fine-tuning, PEFT, Unsloth)
  • Quick deployment in QLoRA-aware stacks

Limitations

  • Trained on ~2K samples + 3 custom prompts
  • Single-run fine-tune only
  • Not optimized for >2K context
  • 4-bit quantization may reduce fidelity
  • Hallucinations possible; not production-ready for critical workflows
  • Previously hallucinated QLoRA terms now corrected; tested via eval script
  • Still not production-grade for factual QA or critical domains

Evaluation

This repo includes an eval_adapter.py script that:

  • Checks for hallucination patterns (e.g. false QLoRA definitions)
  • Computes keyword overlap per instruction (≥4/6 threshold)
  • Outputs JSON summary (eval_results.json) with full logs

Run make eval to validate adapter behavior.


Training Configuration

Parameter Value
Base Model unsloth/llama-3-8b-bnb-4bit
Adapter Format LoRA (merged)
LoRA r 16
LoRA alpha 16
LoRA dropout 0.05
Epochs 2
Examples ~2K (alpaca-cleaned + grounded)
Precision 4-bit (bnb)

Usage

make install   # Create .venv and install with uv
make train     # Train LoRA adapter
make eval      # Evaluate output quality
make run       # Run quick inference

Hugging Face Login

export HUGGINGFACE_TOKEN=hf_xxx
make login

Local Inference (Python)

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

BASE = "unsloth/llama-3-8b-bnb-4bit"
ADAPTER = "Cre4T3Tiv3/unsloth-llama3-alpaca-lora"

base_model = AutoModelForCausalLM.from_pretrained(BASE, device_map="auto", load_in_4bit=True)
model = PeftModel.from_pretrained(base_model, ADAPTER).merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(ADAPTER)

prompt = "### Instruction:\nExplain LoRA fine-tuning in simple terms.\n\n### Response:"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=128)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Demo Space

🖥 Try the model live via Hugging Face Spaces:

Launch Demo → unsloth-llama3-alpaca-demo


Links


Built With


Maintainer

Built with ❤️ by @Cre4T3Tiv3 at ByteStack Labs


Citation

If you use this adapter or its training methodology, please consider citing:

@software{unsloth-llama3-alpaca-lora,
  author = {Jesse Moses, Cre4T3Tiv3},
  title = {Unsloth LoRA Adapter for LLaMA 3 (8B)},
  year = {2025},
  url = {https://huggingface.co/Cre4T3Tiv3/unsloth-llama3-alpaca-lora},
}

License

Apache 2.0


About

Fine-tuned 4-bit LoRA adapter for LLaMA 3 using Alpaca-style and QLoRA-grounded instructions, built with Unsloth for fast local training.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published