This repository provides code for evaluation and reproduction of our results in LMUnit: Fine-grained Evaluation with Natural Language Unit Tests.
- 2025-07: Open-Sourced LMUnit checkpoints Llama 3.1-70B and Qwen 2.5-72B models. Besides, evaluation framework for reproducing our direct scoring and preference tasks results
pip install lmunit
from lmunit import LMUnit
from vllm import SamplingParams
# Initialize LMUnit with your model
model = LMUnit(
model_path="ContextualAI/LMUnit-llama3.1-70b",
tp_size=4
)
sampling_params = SamplingParams(temperature=0.0, max_tokens=10, logprobs=20)
# Define your evaluation prompt
unit_test = "Does the response specify minimum system logs required for compliance?"
query = "What security validation protocols ensure HIPAA compliance when connecting research databases to clinical systems?"
response = """Customer Concentration Risk Comparison:
Snowflake's Platform segment shows higher concentration risk than Product segment:
Product: 15% (Customer X), 8% (Customer Y), 77% others
Platform: 20% (Customer Z), 5% (Customer W), 75% others
HIPAA Technical Controls:
Data Encryption Requirements:
Regulation: 45 CFR § 164.312(a)(2)(iv)
Validation: All data encrypted at rest/transit using FIPS 140-2 algorithms
Testing: Vulnerability scanning and penetration testing for encryption weaknesses
Additional Compliance Measures:
Risk analysis for security threats
Access controls for PHI authorization
Incident response planning
Required logs: encryption key management, data access, security incidents"""
prompt = f"Query: {query}\n\nResponse: {response}\n\nUnit Test: {unit_test}"
output = model.generate(prompt, sampling_params)
lmunit/
├── assets/ # Documentation assets and figures
├── eval/ # Evaluation scripts and benchmarks
│ ├── eval.py # Main evaluation script
│ └── reward_bench2.py # Reward benchmarking utilities
├── lmunit/ # Core LMUnit package
│ ├── __init__.py # Package initialization
│ ├── constants.py # Framework constants
│ ├── lmunit.py # Main LMUnit class implementation
│ ├── metrics.py # Evaluation metrics
│ └── tasks.py # Task definitions and utilities
├── requirements/ # Dependencies
├── requirements.txt # Main dependencies
└── dev.txt # Development dependencies
- LMUnit Models Collection - Pre-trained models and evaluation datasets
Model | Flask | BiGGen-Bench | Human-Internal | InfoBench | RB | LFQA | RB2 |
---|---|---|---|---|---|---|---|
LMUnit-LLaMA-3.1-70B | 72.03 | 67.69 | 93.63 | 89.00 | 91.56 | 76.15 | 80.5 |
LMUNIT_Qwen2.5-72B | 73.85 | 69.56 | 94.44 | 88.67 | 91.13 | 73.85 | 82.1 |
pip install lmunit
For running an specific task on an LMUnit model
python eval/eval.py --task <task> --model-path <lmunit-model> --tensor-parallel-size <tp-size>
For running rewardbench2 results:
python eval/reward_bench2.py --model-path <lmunit-model> --tensor-parallel-size <tp-size>
./scripts/run_all_evaluations.sh <model_path> <tensor_parallel_size> [output_dir]
@misc{saadfalcon2024lmunitfinegrainedevaluationnatural,
title={LMUnit: Fine-grained Evaluation with Natural Language Unit Tests},
author={Jon Saad-Falcon* and Rajan Vivek* and William Berrios* and Nandita Shankar Naik and Matija Franklin and Bertie Vidgen and Amanpreet Singh and Douwe Kiela and Shikib Mehri},
year={2024},
eprint={2412.13091},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.13091},
note={*Equal contribution}
}