iDeepLC: A deep Learning-based retention time predictor for unseen modified peptides with a novel encoding system
iDeepLC is a deep learning-based tool for retention time prediction in proteomics.
- Retention Time Prediction: Predict retention times for peptides, including modified ones.
- Fine-Tuning: Fine-tune the pre-trained model for specific datasets.
- Visualization: Generate scatter plots and other figures for analysis.
Intall the package using pip:
pip install iDeepLC
The iDeepLC package provides a CLI for easy usage. Below are some examples:
ideeplc --input <path/to/peptide_file.csv> --save
ideeplc --input <path/to/peptide_file.csv> --save --finetune
ideeplc --input <path/to/peptide_file.csv> --save --calibrate
ideeplc --input ./data/example_input/Hela_deeprt --save --finetune --calibrate
For more detailed CLI usage, you can run:
ideeplc --help
The input file should be a CSV file with the following columns:
seq
: The amino acid sequence of the peptide. (e.g.,ACDEFGHIKLMNPQRSTVWY
)modifications
: A string representing modifications in the sequence. (e.g.,11|Oxidation|16|Phospho
)tr
: The retention time of the peptide in seconds. (e.g.,1285.63
)
For example:
NQDLISENK,,2705.724
LGSPPPHK,3|Phospho,2029.974
RMQSLQLDCVAVPSSR,2|Oxidation|4|Phospho,4499.832
If you use iDeepLC in your research, please cite our paper:
📄 iDeepLC: A deep Learning-based retention time predictor for unseen modified peptides with a novel encoding system
🖊 Alireza Nameni, Arthur Declercq, Ralf Gabriels, Robbe Devreese, Lennart Martens, Sven Degroeve , and Robbin Bouwmeester
📅 2025
🔗 DOI