Skip to content

Commit f0f6313

Browse files
add smart open
1 parent 0e74fd6 commit f0f6313

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

56 files changed

+14571
-13237
lines changed

Chapter1/list/get_elements.ipynb

Lines changed: 172 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,6 +54,28 @@
5454
"random.choice(to_do_tonight)"
5555
]
5656
},
57+
{
58+
"cell_type": "code",
59+
"execution_count": 6,
60+
"id": "5d5760fe",
61+
"metadata": {},
62+
"outputs": [
63+
{
64+
"data": {
65+
"text/plain": [
66+
"3"
67+
]
68+
},
69+
"execution_count": 6,
70+
"metadata": {},
71+
"output_type": "execute_result"
72+
}
73+
],
74+
"source": [
75+
"l = [1, 2, 3]\n",
76+
"l.pop()"
77+
]
78+
},
5779
{
5880
"cell_type": "markdown",
5981
"id": "dc955503",
@@ -229,6 +251,155 @@
229251
"print(f'Run {expSize} experiments. Using heapq is {ratio} times'\n",
230252
"' faster than using sorting')"
231253
]
254+
},
255+
{
256+
"cell_type": "code",
257+
"execution_count": 1,
258+
"id": "7f42e002",
259+
"metadata": {},
260+
"outputs": [
261+
{
262+
"name": "stdout",
263+
"output_type": "stream",
264+
"text": [
265+
"CPU times: user 26.4 ms, sys: 7.96 ms, total: 34.3 ms\n",
266+
"Wall time: 34.8 ms\n"
267+
]
268+
}
269+
],
270+
"source": [
271+
"list_data = list(range(1000000))\n",
272+
"%time squared_list = [x**2 for x in list_data]\n",
273+
"# Output: CPU times: user 150 ms, sys: 1.72 ms, total: 152 ms"
274+
]
275+
},
276+
{
277+
"cell_type": "code",
278+
"execution_count": 2,
279+
"id": "cd67a3fb",
280+
"metadata": {},
281+
"outputs": [
282+
{
283+
"name": "stdout",
284+
"output_type": "stream",
285+
"text": [
286+
"CPU times: user 9 ms, sys: 830 μs, total: 9.83 ms\n",
287+
"Wall time: 1.59 ms\n"
288+
]
289+
}
290+
],
291+
"source": [
292+
"import numpy as np\n",
293+
"\n",
294+
"np_data = np.arange(1000000)\n",
295+
"%time squared_np = np_data**2\n",
296+
"# Output: CPU times: user 1.62 ms, sys: 965 µs, total: 2.59 ms"
297+
]
298+
},
299+
{
300+
"cell_type": "code",
301+
"execution_count": 16,
302+
"id": "285c5f3f",
303+
"metadata": {},
304+
"outputs": [
305+
{
306+
"name": "stdout",
307+
"output_type": "stream",
308+
"text": [
309+
"[0, 1, 2, 3, 4]\n"
310+
]
311+
}
312+
],
313+
"source": [
314+
"lst = [1, 2, 3]\n",
315+
"lst.append(4)\n",
316+
"lst.insert(0, 0)\n",
317+
"print(lst) # Output: [0, 1, 2, 3, 4]"
318+
]
319+
},
320+
{
321+
"cell_type": "code",
322+
"execution_count": 17,
323+
"id": "0f34505e",
324+
"metadata": {},
325+
"outputs": [
326+
{
327+
"name": "stdout",
328+
"output_type": "stream",
329+
"text": [
330+
"[0.84147098 0.90929743 0.14112001]\n",
331+
"[11 22 33]\n"
332+
]
333+
}
334+
],
335+
"source": [
336+
"arr = np.array([1, 2, 3])\n",
337+
"print(np.sin(arr)) # Output: [0.84147098 0.90929743 0.14112001]\n",
338+
"print(arr + np.array([10, 20, 30])) # Output: [11 22 33]"
339+
]
340+
},
341+
{
342+
"cell_type": "code",
343+
"execution_count": 18,
344+
"id": "de7323ba",
345+
"metadata": {},
346+
"outputs": [
347+
{
348+
"name": "stdout",
349+
"output_type": "stream",
350+
"text": [
351+
"3\n"
352+
]
353+
}
354+
],
355+
"source": [
356+
"nested_list = [[1, 2], [3, 4], [5, 6]]\n",
357+
"print(nested_list[1][0]) # Output: 3"
358+
]
359+
},
360+
{
361+
"cell_type": "code",
362+
"execution_count": 19,
363+
"id": "e5382f00",
364+
"metadata": {},
365+
"outputs": [
366+
{
367+
"name": "stdout",
368+
"output_type": "stream",
369+
"text": [
370+
"(3, 2)\n",
371+
"[2 4 6]\n"
372+
]
373+
}
374+
],
375+
"source": [
376+
"matrix = np.array([[1, 2], [3, 4], [5, 6]])\n",
377+
"print(matrix.shape) # Output: (3, 2)\n",
378+
"print(matrix[:, 1]) # Output: [2 4 6]"
379+
]
380+
},
381+
{
382+
"cell_type": "code",
383+
"execution_count": 20,
384+
"id": "887d0537",
385+
"metadata": {},
386+
"outputs": [
387+
{
388+
"name": "stdout",
389+
"output_type": "stream",
390+
"text": [
391+
"Mean: 3.5, Standard Deviation: 1.707825127659933\n"
392+
]
393+
}
394+
],
395+
"source": [
396+
"import numpy as np\n",
397+
"\n",
398+
"data = np.array([[1, 2, 3], [4, 5, 6]])\n",
399+
"mean = np.mean(data)\n",
400+
"std_dev = np.std(data)\n",
401+
"print(f\"Mean: {mean}, Standard Deviation: {std_dev}\")"
402+
]
232403
}
233404
],
234405
"metadata": {
@@ -248,7 +419,7 @@
248419
"name": "python",
249420
"nbconvert_exporter": "python",
250421
"pygments_lexer": "ipython3",
251-
"version": "3.8.9"
422+
"version": "3.11.6"
252423
},
253424
"toc": {
254425
"base_numbering": 1,

Chapter2/itertools.ipynb

Lines changed: 55 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -259,7 +259,24 @@
259259
"outputs": [
260260
{
261261
"data": {
262-
"application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 7;\n var nbb_unformatted_code = \"def multiply(x: float, y: float):\\n return x * y\";\n var nbb_formatted_code = \"def multiply(x: float, y: float):\\n return x * y\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ",
262+
"application/javascript": [
263+
"\n",
264+
" setTimeout(function() {\n",
265+
" var nbb_cell_id = 7;\n",
266+
" var nbb_unformatted_code = \"def multiply(x: float, y: float):\\n return x * y\";\n",
267+
" var nbb_formatted_code = \"def multiply(x: float, y: float):\\n return x * y\";\n",
268+
" var nbb_cells = Jupyter.notebook.get_cells();\n",
269+
" for (var i = 0; i < nbb_cells.length; ++i) {\n",
270+
" if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n",
271+
" if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n",
272+
" nbb_cells[i].set_text(nbb_formatted_code);\n",
273+
" }\n",
274+
" break;\n",
275+
" }\n",
276+
" }\n",
277+
" }, 500);\n",
278+
" "
279+
],
263280
"text/plain": [
264281
"<IPython.core.display.Javascript object>"
265282
]
@@ -297,7 +314,24 @@
297314
},
298315
{
299316
"data": {
300-
"application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 14;\n var nbb_unformatted_code = \"nums = [(1, 2), (4, 2), (2, 5)]\\nlist(map(multiply, nums))\";\n var nbb_formatted_code = \"nums = [(1, 2), (4, 2), (2, 5)]\\nlist(map(multiply, nums))\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ",
317+
"application/javascript": [
318+
"\n",
319+
" setTimeout(function() {\n",
320+
" var nbb_cell_id = 14;\n",
321+
" var nbb_unformatted_code = \"nums = [(1, 2), (4, 2), (2, 5)]\\nlist(map(multiply, nums))\";\n",
322+
" var nbb_formatted_code = \"nums = [(1, 2), (4, 2), (2, 5)]\\nlist(map(multiply, nums))\";\n",
323+
" var nbb_cells = Jupyter.notebook.get_cells();\n",
324+
" for (var i = 0; i < nbb_cells.length; ++i) {\n",
325+
" if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n",
326+
" if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n",
327+
" nbb_cells[i].set_text(nbb_formatted_code);\n",
328+
" }\n",
329+
" break;\n",
330+
" }\n",
331+
" }\n",
332+
" }, 500);\n",
333+
" "
334+
],
301335
"text/plain": [
302336
"<IPython.core.display.Javascript object>"
303337
]
@@ -342,7 +376,24 @@
342376
},
343377
{
344378
"data": {
345-
"application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 15;\n var nbb_unformatted_code = \"from itertools import starmap\\n\\nlist(starmap(multiply, nums))\";\n var nbb_formatted_code = \"from itertools import starmap\\n\\nlist(starmap(multiply, nums))\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ",
379+
"application/javascript": [
380+
"\n",
381+
" setTimeout(function() {\n",
382+
" var nbb_cell_id = 15;\n",
383+
" var nbb_unformatted_code = \"from itertools import starmap\\n\\nlist(starmap(multiply, nums))\";\n",
384+
" var nbb_formatted_code = \"from itertools import starmap\\n\\nlist(starmap(multiply, nums))\";\n",
385+
" var nbb_cells = Jupyter.notebook.get_cells();\n",
386+
" for (var i = 0; i < nbb_cells.length; ++i) {\n",
387+
" if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n",
388+
" if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n",
389+
" nbb_cells[i].set_text(nbb_formatted_code);\n",
390+
" }\n",
391+
" break;\n",
392+
" }\n",
393+
" }\n",
394+
" }, 500);\n",
395+
" "
396+
],
346397
"text/plain": [
347398
"<IPython.core.display.Javascript object>"
348399
]
@@ -715,7 +766,7 @@
715766
"metadata": {
716767
"hide_input": false,
717768
"kernelspec": {
718-
"display_name": "venv",
769+
"display_name": "Python 3 (ipykernel)",
719770
"language": "python",
720771
"name": "python3"
721772
},

0 commit comments

Comments
 (0)