|
1 | 1 | {
|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 |
| - "cell_type": "markdown", |
5 |
| - "id": "b25228f0", |
| 4 | + "cell_type": "raw", |
| 5 | + "id": "af6530d4-d251-4240-90f6-eed4704a0a1a", |
6 | 6 | "metadata": {},
|
7 | 7 | "source": [
|
8 | 8 | "## PySpark"
|
9 | 9 | ]
|
10 | 10 | },
|
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "06ae6e73-bfad-45fb-b338-048da0c0c789", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "## 3 Powerful Ways to Create PySpark DataFrames" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "id": "66e1b5d0", |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "from pyspark.sql import SparkSession\n", |
| 27 | + "\n", |
| 28 | + "spark = SparkSession.builder.getOrCreate()" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "id": "08648f09-21cd-42d0-8b0f-be04fa7e2002", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "Here are the three powerful methods to create DataFrames in PySpark, each with its own advantages:" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "id": "b35944a8-7824-4971-9cc5-cf847c5269fb", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "1. Using StructType and StructField:" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": 6, |
| 50 | + "id": "a16e73a8", |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [ |
| 53 | + { |
| 54 | + "name": "stdout", |
| 55 | + "output_type": "stream", |
| 56 | + "text": [ |
| 57 | + "+-------+---+\n", |
| 58 | + "| name|age|\n", |
| 59 | + "+-------+---+\n", |
| 60 | + "| Alice| 25|\n", |
| 61 | + "| Bob| 30|\n", |
| 62 | + "|Charlie| 35|\n", |
| 63 | + "+-------+---+\n", |
| 64 | + "\n" |
| 65 | + ] |
| 66 | + } |
| 67 | + ], |
| 68 | + "source": [ |
| 69 | + "from pyspark.sql.types import StructType, StructField, StringType, IntegerType\n", |
| 70 | + "\n", |
| 71 | + "\n", |
| 72 | + "data = [(\"Alice\", 25), (\"Bob\", 30), (\"Charlie\", 35)]\n", |
| 73 | + "schema = StructType(\n", |
| 74 | + " [StructField(\"name\", StringType(), True), StructField(\"age\", IntegerType(), True)]\n", |
| 75 | + ")\n", |
| 76 | + "\n", |
| 77 | + "df = spark.createDataFrame(data, schema)\n", |
| 78 | + "df.show()" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "cell_type": "markdown", |
| 83 | + "id": "d6db8d65-4aa9-4f2a-bbf1-2a85e62b987a", |
| 84 | + "metadata": {}, |
| 85 | + "source": [ |
| 86 | + "Pros:\n", |
| 87 | + "- Explicit schema definition, giving you full control over data types\n", |
| 88 | + "- Helps catch data type mismatches early\n", |
| 89 | + "- Ideal when you need to ensure data consistency and type safety\n", |
| 90 | + "- Can improve performance by avoiding schema inference" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "markdown", |
| 95 | + "id": "9ee5ab77-dd71-4e83-bf66-f7b5704ead09", |
| 96 | + "metadata": {}, |
| 97 | + "source": [ |
| 98 | + "2. Using Row objects:" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": 5, |
| 104 | + "id": "bfca4bd7", |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [ |
| 107 | + { |
| 108 | + "name": "stdout", |
| 109 | + "output_type": "stream", |
| 110 | + "text": [ |
| 111 | + "+-------+---+\n", |
| 112 | + "| name|age|\n", |
| 113 | + "+-------+---+\n", |
| 114 | + "| Alice| 25|\n", |
| 115 | + "| Bob| 30|\n", |
| 116 | + "|Charlie| 35|\n", |
| 117 | + "+-------+---+\n", |
| 118 | + "\n" |
| 119 | + ] |
| 120 | + } |
| 121 | + ], |
| 122 | + "source": [ |
| 123 | + "from pyspark.sql import Row\n", |
| 124 | + "\n", |
| 125 | + "data = [Row(name=\"Alice\", age=25), Row(name=\"Bob\", age=30), Row(name=\"Charlie\", age=35)]\n", |
| 126 | + "df = spark.createDataFrame(data)\n", |
| 127 | + "df.show()" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "markdown", |
| 132 | + "id": "8812e9a0-c54d-44f4-8300-5ec0bdf53061", |
| 133 | + "metadata": {}, |
| 134 | + "source": [ |
| 135 | + "Pros:\n", |
| 136 | + "- More Pythonic approach, leveraging named tuples\n", |
| 137 | + "- Good for scenarios where data structure might evolve" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "markdown", |
| 142 | + "id": "ef78d9a3-cd5a-44bb-a1d9-155e67c3743f", |
| 143 | + "metadata": {}, |
| 144 | + "source": [ |
| 145 | + "3. From Pandas DataFrame:" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": 6, |
| 151 | + "id": "9f8050dc", |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [ |
| 154 | + { |
| 155 | + "name": "stdout", |
| 156 | + "output_type": "stream", |
| 157 | + "text": [ |
| 158 | + "+-------+---+\n", |
| 159 | + "| name|age|\n", |
| 160 | + "+-------+---+\n", |
| 161 | + "| Alice| 25|\n", |
| 162 | + "| Bob| 30|\n", |
| 163 | + "|Charlie| 35|\n", |
| 164 | + "+-------+---+\n", |
| 165 | + "\n" |
| 166 | + ] |
| 167 | + } |
| 168 | + ], |
| 169 | + "source": [ |
| 170 | + "import pandas as pd\n", |
| 171 | + "\n", |
| 172 | + "pandas_df = pd.DataFrame({\"name\": [\"Alice\", \"Bob\", \"Charlie\"], \"age\": [25, 30, 35]})\n", |
| 173 | + "df = spark.createDataFrame(pandas_df)\n", |
| 174 | + "df.show()" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "markdown", |
| 179 | + "id": "aaf54d83-69a5-47ec-b0c7-bf435e08fc5d", |
| 180 | + "metadata": {}, |
| 181 | + "source": [ |
| 182 | + "Pros:\n", |
| 183 | + "- Familiar to data scientists who frequently use Pandas" |
| 184 | + ] |
| 185 | + }, |
11 | 186 | {
|
12 | 187 | "cell_type": "markdown",
|
13 | 188 | "id": "8edc16c3",
|
|
0 commit comments