-
Notifications
You must be signed in to change notification settings - Fork 337
Dynamic column selection #3936
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Dynamic column selection #3936
Changes from 3 commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
bc864c6
Dynamic column selection
mneedham 8b8b293
add headings
mneedham dcbf838
sidebar
mneedham 4358583
Update docs/guides/developer/dynamic-column-selection.md
mneedham 5e7c92f
Update docs/guides/developer/dynamic-column-selection.md
mneedham bb03eb7
Update docs/guides/developer/dynamic-column-selection.md
mneedham 2a84ba6
Update docs/guides/developer/dynamic-column-selection.md
mneedham 472d876
Update docs/guides/developer/dynamic-column-selection.md
gingerwizard File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
--- | ||
slug: /guides/developer/dynamic-column-selection | ||
sidebar_label: 'Dynamic column selection' | ||
title: 'Dynamic column selection' | ||
description: 'Use alternative query languages in ClickHouse' | ||
--- | ||
|
||
[Dynamic column selection](/docs/sql-reference/statements/select#dynamic-column-selection) is a powerful but underutilized ClickHouse feature that allows you to select columns using regular expressions instead of naming each column individually. You can also apply functions to matching columns using the APPLY modifier, making it incredibly useful for data analysis and transformation tasks. | ||
|
||
We're going to learn how to use this feature with help from the [New York taxis dataset](/docs/getting-started/example-datasets/nyc-taxi), which you can find also find in the [ClickHouse SQL playground](https://sql.clickhouse.com?query=LS0gRGF0YXNldCBjb250YWluaW5nIHRheGkgcmlkZSBkYXRhIGluIE5ZQyBmcm9tIDIwMDkuIE1vcmUgaW5mbyBoZXJlOiBodHRwczovL2NsaWNraG91c2UuY29tL2RvY3MvZW4vZ2V0dGluZy1zdGFydGVkL2V4YW1wbGUtZGF0YXNldHMvbnljLXRheGkKU0VMRUNUICogRlJPTSBueWNfdGF4aS50cmlwcyBMSU1JVCAxMDA). | ||
mneedham marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
<iframe width="768" height="432" src="https://www.youtube.com/embed/moabRqqHNo4?si=jgmInV-u3UxtLvMS" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> | ||
|
||
## Selecting columns that match a pattern {#selecting-columns} | ||
|
||
Let's start with a common scenario: selecting only the columns that contain `_amount` from the NYC taxi dataset. Instead of manually typing each column name, we can use the `COLUMNS` expression with a regular expression: | ||
|
||
```sql | ||
FROM nyc_taxi.trips | ||
SELECT COLUMNS('.*_amount') | ||
LIMIT 10; | ||
``` | ||
|
||
> [Try this query in the SQL playground](https://sql.clickhouse.com?query=U0VMRUNUIENPTFVNTlMoJy4qX2Ftb3VudCcpCkZST00gbnljX3RheGkudHJpcHMKTElNSVQgMTA7&run_query=true) | ||
|
||
This query returns the first 10 rows, but only for columns whose names match the pattern `.*_amount` (any characters followed by "_amount"). | ||
|
||
```text | ||
┌─fare_amount─┬─tip_amount─┬─tolls_amount─┬─total_amount─┐ | ||
1. │ 9 │ 0 │ 0 │ 9.8 │ | ||
2. │ 9 │ 0 │ 0 │ 9.8 │ | ||
3. │ 3.5 │ 0 │ 0 │ 4.8 │ | ||
4. │ 3.5 │ 0 │ 0 │ 4.8 │ | ||
5. │ 3.5 │ 0 │ 0 │ 4.3 │ | ||
6. │ 3.5 │ 0 │ 0 │ 4.3 │ | ||
7. │ 2.5 │ 0 │ 0 │ 3.8 │ | ||
8. │ 2.5 │ 0 │ 0 │ 3.8 │ | ||
9. │ 5 │ 0 │ 0 │ 5.8 │ | ||
10. │ 5 │ 0 │ 0 │ 5.8 │ | ||
└─────────────┴────────────┴──────────────┴──────────────┘ | ||
``` | ||
|
||
Let’s say we also want to return columns that contain the terms `fee` or `tax`. | ||
We can update the regular expression to include those: | ||
|
||
```sql | ||
SELECT COLUMNS('.*_amount|fee|tax') | ||
FROM nyc_taxi.trips | ||
ORDER BY rand() | ||
LIMIT 3; | ||
``` | ||
|
||
> [Try this query in the SQL playground](https://sql.clickhouse.com?query=U0VMRUNUIENPTFVNTlMoJy4qX2Ftb3VudHxmZWV8dGF4JykKRlJPTSBueWNfdGF4aS50cmlwcwpPUkRFUiBCWSByYW5kKCkgCkxJTUlUIDM7&run_query=true) | ||
|
||
```text | ||
┌─fare_amount─┬─mta_tax─┬─tip_amount─┬─tolls_amount─┬─ehail_fee─┬─total_amount─┐ | ||
1. │ 5 │ 0.5 │ 1 │ 0 │ 0 │ 7.8 │ | ||
2. │ 12.5 │ 0.5 │ 0 │ 0 │ 0 │ 13.8 │ | ||
3. │ 4.5 │ 0.5 │ 1.66 │ 0 │ 0 │ 9.96 │ | ||
└─────────────┴─────────┴────────────┴──────────────┴───────────┴──────────────┘ | ||
``` | ||
|
||
## Selecting multiple patterns {#selecting-multiple-patterns} | ||
|
||
We can combine multiple column patterns in a single query: | ||
|
||
```sql | ||
SELECT | ||
COLUMNS('.*_amount'), | ||
COLUMNS('.*_date.*') | ||
FROM nyc_taxi.trips | ||
LIMIT 5; | ||
``` | ||
|
||
> [Try this query in the SQL playground](https://sql.clickhouse.com?query=U0VMRUNUIAogICAgQ09MVU1OUygnLipfYW1vdW50JyksCiAgICBDT0xVTU5TKCcuKl9kYXRlLionKQpGUk9NIG55Y190YXhpLnRyaXBzCkxJTUlUIDU7&run_query=true) | ||
|
||
```text | ||
┌─fare_amount─┬─tip_amount─┬─tolls_amount─┬─total_amount─┬─pickup_date─┬─────pickup_datetime─┬─dropoff_date─┬────dropoff_datetime─┐ | ||
1. │ 9 │ 0 │ 0 │ 9.8 │ 2001-01-01 │ 2001-01-01 00:01:48 │ 2001-01-01 │ 2001-01-01 00:15:47 │ | ||
2. │ 9 │ 0 │ 0 │ 9.8 │ 2001-01-01 │ 2001-01-01 00:01:48 │ 2001-01-01 │ 2001-01-01 00:15:47 │ | ||
3. │ 3.5 │ 0 │ 0 │ 4.8 │ 2001-01-01 │ 2001-01-01 00:02:08 │ 2001-01-01 │ 2001-01-01 01:00:02 │ | ||
4. │ 3.5 │ 0 │ 0 │ 4.8 │ 2001-01-01 │ 2001-01-01 00:02:08 │ 2001-01-01 │ 2001-01-01 01:00:02 │ | ||
5. │ 3.5 │ 0 │ 0 │ 4.3 │ 2001-01-01 │ 2001-01-01 00:02:26 │ 2001-01-01 │ 2001-01-01 00:04:49 │ | ||
└─────────────┴────────────┴──────────────┴──────────────┴─────────────┴─────────────────────┴──────────────┴─────────────────────┘ | ||
``` | ||
|
||
## Apply functions to all columns {#applying-functions} | ||
|
||
We can also use the [`APPLY`](https://clickhouse.com/docs/sql-reference/statements/select#apply) modifier to apply functions across every column. | ||
For example, if we wanted to find the maximum value of each of those columns, we could run the following query: | ||
|
||
```sql | ||
SELECT COLUMNS('.*_amount|fee|tax') APPLY(max) | ||
FROM nyc_taxi.trips; | ||
``` | ||
|
||
> [Try this query in the SQL playground](https://sql.clickhouse.com?query=U0VMRUNUIENPTFVNTlMoJy4qX2Ftb3VudHxmZWV8dGF4JykgQVBQTFkobWF4KQpGUk9NIG55Y190YXhpLnRyaXBzOw&run_query=true) | ||
|
||
|
||
```text | ||
┌─max(fare_amount)─┬─max(mta_tax)─┬─max(tip_amount)─┬─max(tolls_amount)─┬─max(ehail_fee)─┬─max(total_amount)─┐ | ||
1. │ 998310 │ 500000.5 │ 3950588.8 │ 7999.92 │ 1.95 │ 3950611.5 │ | ||
└──────────────────┴──────────────┴─────────────────┴───────────────────┴────────────────┴───────────────────┘ | ||
``` | ||
|
||
Or maybe, we’d like to see the average instead: | ||
|
||
```sql | ||
SELECT COLUMNS('.*_amount|fee|tax') APPLY(avg) | ||
FROM nyc_taxi.trips | ||
``` | ||
|
||
> [Try this query in the SQL playground](https://sql.clickhouse.com?query=U0VMRUNUIENPTFVNTlMoJy4qX2Ftb3VudHxmZWV8dGF4JykgQVBQTFkoYXZnKQpGUk9NIG55Y190YXhpLnRyaXBzOw&run_query=true) | ||
|
||
|
||
```text | ||
┌─avg(fare_amount)─┬───────avg(mta_tax)─┬────avg(tip_amount)─┬──avg(tolls_amount)─┬──────avg(ehail_fee)─┬──avg(total_amount)─┐ | ||
1. │ 11.8044154834777 │ 0.4555942672733423 │ 1.3469850969211845 │ 0.2256511991414463 │ 3.37600560437412e-9 │ 14.423323722271563 │ | ||
└──────────────────┴────────────────────┴────────────────────┴────────────────────┴─────────────────────┴────────────────────┘ | ||
``` | ||
|
||
|
||
Those values contain a lot of decimal places, but luckily we can fix that by chaining functions. In this case, we’ll apply the avg function, followed by the round function: | ||
|
||
```sql | ||
SELECT COLUMNS('.*_amount|fee|tax') APPLY(avg) APPLY(round) | ||
FROM nyc_taxi.trips; | ||
``` | ||
|
||
> [Try this query in the SQL playground](https://sql.clickhouse.com?query=U0VMRUNUIENPTFVNTlMoJy4qX2Ftb3VudHxmZWV8dGF4JykgQVBQTFkoYXZnKSBBUFBMWShyb3VuZCkKRlJPTSBueWNfdGF4aS50cmlwczs&run_query=true) | ||
|
||
|
||
```text | ||
┌─round(avg(fare_amount))─┬─round(avg(mta_tax))─┬─round(avg(tip_amount))─┬─round(avg(tolls_amount))─┬─round(avg(ehail_fee))─┬─round(avg(total_amount))─┐ | ||
1. │ 12 │ 0 │ 1 │ 0 │ 0 │ 14 │ | ||
└─────────────────────────┴─────────────────────┴────────────────────────┴──────────────────────────┴───────────────────────┴──────────────────────────┘ | ||
``` | ||
|
||
|
||
But that rounds the averages to whole numbers. If we want to round to, say, 2 decimal places, we can do that as well. As well as taking in functions, the APPLY function takes in a lambda, which gives us the flexibility to have the round function round our average values to 2 decimal places: | ||
mneedham marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
```sql | ||
SELECT COLUMNS('.*_amount|fee|tax') APPLY(avg) APPLY(x -> round(x, 2)) | ||
FROM nyc_taxi.trips; | ||
``` | ||
|
||
> [Try this query in the SQL playground](https://sql.clickhouse.com?query=U0VMRUNUIENPTFVNTlMoJy4qX2Ftb3VudHxmZWV8dGF4JykgQVBQTFkgYXZnIEFQUExZIHggLT4gcm91bmQoeCwgMikKRlJPTSBueWNfdGF4aS50cmlwcw&run_query=true) | ||
|
||
|
||
```text | ||
┌─round(avg(fare_amount), 2)─┬─round(avg(mta_tax), 2)─┬─round(avg(tip_amount), 2)─┬─round(avg(tolls_amount), 2)─┬─round(avg(ehail_fee), 2)─┬─round(avg(total_amount), 2)─┐ | ||
1. │ 11.8 │ 0.46 │ 1.35 │ 0.23 │ 0 │ 14.42 │ | ||
└────────────────────────────┴────────────────────────┴───────────────────────────┴─────────────────────────────┴──────────────────────────┴─────────────────────────────┘ | ||
``` | ||
|
||
## Replacing columns {#replacing-columns} | ||
|
||
So far so good. But let’s say we want to adjust one of the values, while leaving the other ones as they are. For example, maybe we want to double the total amount and divide the MTA tax by 1.1. We can do that by using the REPLACE clause, which will replace a column while leaving the other ones as they are. | ||
mneedham marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
```sql | ||
FROM nyc_taxi.trips | ||
SELECT | ||
COLUMNS('.*_amount|fee|tax') | ||
REPLACE( | ||
total_amount*2 AS total_amount, | ||
mta_tax/1.1 AS mta_tax | ||
) | ||
APPLY(avg) | ||
APPLY(col -> round(col, 2)); | ||
``` | ||
|
||
> [Try this query in the SQL playground](https://sql.clickhouse.com?query=RlJPTSBueWNfdGF4aS50cmlwcyAKU0VMRUNUIAogIENPTFVNTlMoJy4qX2Ftb3VudHxmZWV8dGF4JykKICBSRVBMQUNFKAogICAgdG90YWxfYW1vdW50KjIgQVMgdG90YWxfYW1vdW50LAogICAgbXRhX3RheC8xLjEgQVMgbXRhX3RheAogICkgCiAgQVBQTFkoYXZnKQogIEFQUExZKGNvbCAtPiByb3VuZChjb2wsIDIpKTs&run_query=true) | ||
|
||
|
||
```text | ||
┌─round(avg(fare_amount), 2)─┬─round(avg(di⋯, 1.1)), 2)─┬─round(avg(tip_amount), 2)─┬─round(avg(tolls_amount), 2)─┬─round(avg(ehail_fee), 2)─┬─round(avg(mu⋯nt, 2)), 2)─┐ | ||
1. │ 11.8 │ 0.41 │ 1.35 │ 0.23 │ 0 │ 28.85 │ | ||
└────────────────────────────┴──────────────────────────┴───────────────────────────┴─────────────────────────────┴──────────────────────────┴──────────────────────────┘ | ||
``` | ||
|
||
## Excluding columns {#excluding-columns} | ||
|
||
We can also choose to exclude a field by using the EXCEPT clause. For example, to remove the tolls_amount column, we would write the following query: | ||
mneedham marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
```sql | ||
FROM nyc_taxi.trips | ||
SELECT | ||
COLUMNS('.*_amount|fee|tax') EXCEPT(tolls_amount) | ||
REPLACE( | ||
total_amount*2 AS total_amount, | ||
mta_tax/1.1 AS mta_tax | ||
) | ||
APPLY(avg) | ||
APPLY(col -> round(col, 2)); | ||
``` | ||
|
||
> [Try this query in the SQL playground](https://sql.clickhouse.com?query=RlJPTSBueWNfdGF4aS50cmlwcyAKU0VMRUNUIAogIENPTFVNTlMoJy4qX2Ftb3VudHxmZWV8dGF4JykgRVhDRVBUKHRvbGxzX2Ftb3VudCkKICBSRVBMQUNFKAogICAgdG90YWxfYW1vdW50KjIgQVMgdG90YWxfYW1vdW50LAogICAgbXRhX3RheC8xLjEgQVMgbXRhX3RheAogICkgCiAgQVBQTFkoYXZnKQogIEFQUExZKGNvbCAtPiByb3VuZChjb2wsIDIpKTs&run_query=true) | ||
|
||
|
||
|
||
```text | ||
┌─round(avg(fare_amount), 2)─┬─round(avg(di⋯, 1.1)), 2)─┬─round(avg(tip_amount), 2)─┬─round(avg(ehail_fee), 2)─┬─round(avg(mu⋯nt, 2)), 2)─┐ | ||
1. │ 11.8 │ 0.41 │ 1.35 │ 0 │ 28.85 │ | ||
└────────────────────────────┴──────────────────────────┴───────────────────────────┴──────────────────────────┴──────────────────────────┘ | ||
``` |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.