-
Notifications
You must be signed in to change notification settings - Fork 16
Add field-last benchmark script #1950
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,334 @@ | ||
#= | ||
julia --project=.buildkite | ||
using Revise; include(joinpath("benchmarks", "scripts", "benchmark_field_last.jl")) | ||
|
||
# Info | ||
|
||
# Benchmark results: | ||
|
||
Clima A100: | ||
``` | ||
Kernel `add3(x1, x2, x3) = x1+x2+x3` and `n_reads_writes=4`: | ||
[ Info: ArrayType = CuArray | ||
Problem size: (63, 4, 4, 5400, 1), float_type = Float32, device_bandwidth_GBs=2039 | ||
┌─────────────────────────────────────────────────────────────────────┬──────────────────────────────────┬─────────┬─────────────┬────────────────┬────────┐ | ||
│ funcs │ time per call │ bw % │ achieved bw │ n-reads/writes │ n-reps │ | ||
├─────────────────────────────────────────────────────────────────────┼──────────────────────────────────┼─────────┼─────────────┼────────────────┼────────┤ | ||
│ FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) │ 72 microseconds, 899 nanoseconds │ 54.568 │ 1112.64 │ 4 │ 100 │ | ||
│ FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) │ 56 microseconds, 259 nanoseconds │ 70.708 │ 1441.74 │ 4 │ 100 │ | ||
│ FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 56 microseconds, 515 nanoseconds │ 70.3877 │ 1435.21 │ 4 │ 100 │ | ||
│ FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 67 microseconds, 462 nanoseconds │ 58.9663 │ 1202.32 │ 4 │ 100 │ | ||
└─────────────────────────────────────────────────────────────────────┴──────────────────────────────────┴─────────┴─────────────┴────────────────┴────────┘ | ||
|
||
Kernel `add3(x1, x2, x3) = x1+x2+x3` and `n_reads_writes=4`: | ||
[ Info: ArrayType = CuArray | ||
Problem size: (63, 4, 4, 5400, 1), float_type = Float64, device_bandwidth_GBs=2039 | ||
┌─────────────────────────────────────────────────────────────────────┬───────────────────────────────────┬─────────┬─────────────┬────────────────┬────────┐ | ||
│ funcs │ time per call │ bw % │ achieved bw │ n-reads/writes │ n-reps │ | ||
├─────────────────────────────────────────────────────────────────────┼───────────────────────────────────┼─────────┼─────────────┼────────────────┼────────┤ | ||
│ FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) │ 106 microseconds, 783 nanoseconds │ 74.5051 │ 1519.16 │ 4 │ 100 │ | ||
│ FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) │ 102 microseconds, 472 nanoseconds │ 77.6396 │ 1583.07 │ 4 │ 100 │ | ||
│ FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 102 microseconds, 523 nanoseconds │ 77.6008 │ 1582.28 │ 4 │ 100 │ | ||
│ FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 106 microseconds, 834 nanoseconds │ 74.4694 │ 1518.43 │ 4 │ 100 │ | ||
└─────────────────────────────────────────────────────────────────────┴───────────────────────────────────┴─────────┴─────────────┴────────────────┴────────┘ | ||
|
||
Kernel `add3(x1, x2, x3) = x1` and `n_reads_writes=2`: | ||
[ Info: ArrayType = CuArray | ||
Problem size: (63, 4, 4, 5400, 1), float_type = Float32, device_bandwidth_GBs=2039 | ||
┌─────────────────────────────────────────────────────────────────────┬──────────────────────────────────┬─────────┬─────────────┬────────────────┬────────┐ | ||
│ funcs │ time per call │ bw % │ achieved bw │ n-reads/writes │ n-reps │ | ||
├─────────────────────────────────────────────────────────────────────┼──────────────────────────────────┼─────────┼─────────────┼────────────────┼────────┤ | ||
│ FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) │ 61 microseconds, 185 nanoseconds │ 32.5079 │ 662.837 │ 2 │ 100 │ | ||
│ FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) │ 31 microseconds, 376 nanoseconds │ 63.3926 │ 1292.57 │ 2 │ 100 │ | ||
│ FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 31 microseconds, 120 nanoseconds │ 63.9141 │ 1303.21 │ 2 │ 100 │ | ||
│ FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 44 microseconds, 53 nanoseconds │ 45.1499 │ 920.607 │ 2 │ 100 │ | ||
└─────────────────────────────────────────────────────────────────────┴──────────────────────────────────┴─────────┴─────────────┴────────────────┴────────┘ | ||
``` | ||
|
||
# CPU (Mac M1) | ||
``` | ||
[ Info: ArrayType = identity | ||
Problem size: (63, 4, 4, 5400, 1), float_type = Float32, device_bandwidth_GBs=2039 | ||
┌─────────────────────────────────────────────────────────────────────┬───────────────────────────────────┬──────────┬─────────────┬────────────────┬────────┐ | ||
│ funcs │ time per call (CPU) │ bw % │ achieved bw │ n-reads/writes │ n-reps │ | ||
├─────────────────────────────────────────────────────────────────────┼───────────────────────────────────┼──────────┼─────────────┼────────────────┼────────┤ | ||
│ FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) │ 16 milliseconds, 494 microseconds │ 0.241171 │ 4.91747 │ 4 │ 100 │ | ||
│ FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) │ 783 microseconds, 256 nanoseconds │ 5.07871 │ 103.555 │ 4 │ 100 │ | ||
│ FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 790 microseconds, 894 nanoseconds │ 5.02966 │ 102.555 │ 4 │ 100 │ | ||
│ FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 12 milliseconds, 522 microseconds │ 0.317663 │ 6.47714 │ 4 │ 100 │ | ||
└─────────────────────────────────────────────────────────────────────┴───────────────────────────────────┴──────────┴─────────────┴────────────────┴────────┘ | ||
``` | ||
|
||
=# | ||
|
||
#! format: off | ||
module BenchmarkFieldLastIndex | ||
|
||
using CUDA | ||
include("benchmark_utils.jl") | ||
|
||
@inline function const_linear_index(us::UniversalSizesStatic, I, field_index) | ||
n = (get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), 1) | ||
i = I + prod(n)*field_index | ||
return i | ||
end | ||
|
||
@inline function const_linear_index_reference(us::UniversalSizesStatic, I, field_index) | ||
CI = CartesianIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), 1)) | ||
LI = LinearIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), field_index+1)) | ||
return LI[CI[I] + CartesianIndex((0, 0, 0, 0, field_index))] | ||
end | ||
|
||
# add3(x1, x2, x3) = x1 + x2 + x3 | ||
add3(x1, x2, x3) = x1 | ||
|
||
function aos_cart_offset!(X, Y, us; nreps = 1, bm=nothing, n_trials = 30) | ||
if Y isa Array | ||
e = Inf | ||
CI = CartesianIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), 1)) | ||
for t in 1:n_trials | ||
et = Base.@elapsed begin | ||
for i in 1:nreps | ||
@inbounds @simd for I in 1:get_N(us) | ||
CI1 = CI[I] | ||
CI2 = CI1 + CartesianIndex((0, 0, 0, 0, 1)) | ||
CI3 = CI1 + CartesianIndex((0, 0, 0, 0, 2)) | ||
Y[CI1] = add3(X[CI1], X[CI2], X[CI3]) | ||
end | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
else | ||
e = Inf | ||
kernel = CUDA.@cuda always_inline = true launch = false aos_cart_offset_kernel!(X,Y,us) | ||
config = CUDA.launch_configuration(kernel.fun) | ||
threads = min(get_N(us), config.threads) | ||
blocks = cld(get_N(us), threads) | ||
for t in 1:n_trials | ||
et = CUDA.@elapsed begin | ||
charleskawczynski marked this conversation as resolved.
Show resolved
Hide resolved
|
||
for i in 1:nreps # reduce variance / impact of launch latency | ||
kernel(X,Y,us; threads, blocks) | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
end | ||
push_info(bm; kernel_time_s=e/nreps, nreps, caller = @caller_name(@__FILE__), problem_size = size(us), n_reads_writes=4) | ||
return nothing | ||
end; | ||
function aos_cart_offset_kernel!(X, Y, us) | ||
@inbounds begin | ||
I = (CUDA.blockIdx().x - Int32(1)) * CUDA.blockDim().x + CUDA.threadIdx().x | ||
if I ≤ get_N(us) | ||
n = (get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), 1) | ||
CI1 = CartesianIndices(map(x -> Base.OneTo(x), n))[I] | ||
CI2 = CI1 + CartesianIndex((0, 0, 0, 0, 1)) | ||
CI3 = CI1 + CartesianIndex((0, 0, 0, 0, 2)) | ||
Y[CI1] = add3(X[CI1], X[CI2], X[CI3]) | ||
end | ||
end | ||
return nothing | ||
end; | ||
|
||
function aos_lin_offset!(X, Y, us; nreps = 1, bm=nothing, n_trials = 30) | ||
if Y isa Array | ||
e = Inf | ||
for t in 1:n_trials | ||
et = Base.@elapsed begin | ||
for i in 1:nreps | ||
@inbounds @simd for I in 1:get_N(us) | ||
LY1 = const_linear_index(us, I, 0) | ||
LX1 = const_linear_index(us, I, 0) | ||
LX2 = const_linear_index(us, I, 1) | ||
LX3 = const_linear_index(us, I, 2) | ||
Y[LY1] = add3(X[LX1], X[LX2], X[LX3]) | ||
end | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
else | ||
e = Inf | ||
kernel = CUDA.@cuda always_inline = true launch = false aos_lin_offset_kernel!(X,Y,us) | ||
config = CUDA.launch_configuration(kernel.fun) | ||
threads = min(get_N(us), config.threads) | ||
blocks = cld(get_N(us), threads) | ||
for t in 1:n_trials | ||
et = CUDA.@elapsed begin | ||
for i in 1:nreps | ||
kernel(X,Y,us; threads, blocks) | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
end | ||
push_info(bm; kernel_time_s=e/nreps, nreps, caller = @caller_name(@__FILE__), problem_size = size(us), n_reads_writes=4) | ||
return nothing | ||
end; | ||
function aos_lin_offset_kernel!(X, Y, us) | ||
@inbounds begin | ||
I = (CUDA.blockIdx().x - Int32(1)) * CUDA.blockDim().x + CUDA.threadIdx().x | ||
if I ≤ get_N(us) | ||
LY1 = const_linear_index(us, I, 0) | ||
LX1 = const_linear_index(us, I, 0) | ||
LX2 = const_linear_index(us, I, 1) | ||
LX3 = const_linear_index(us, I, 2) | ||
Y[LY1] = add3(X[LX1], X[LX2], X[LX3]) | ||
end | ||
end | ||
return nothing | ||
end; | ||
|
||
function soa_cart_index!(X, Y, us; nreps = 1, bm=nothing, n_trials = 30) | ||
e = Inf | ||
if first(Y) isa Array | ||
CI = CartesianIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us))) | ||
for t in 1:n_trials | ||
et = Base.@elapsed begin | ||
for i in 1:nreps | ||
(y1,) = Y | ||
(x1, x2, x3) = X | ||
@inbounds @simd for I in 1:get_N(us) | ||
y1[CI[I]] = add3(x1[CI[I]], x2[CI[I]], x3[CI[I]]) | ||
end | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
else | ||
kernel = CUDA.@cuda always_inline = true launch = false soa_cart_index_kernel!(X,Y,us) | ||
config = CUDA.launch_configuration(kernel.fun) | ||
threads = min(get_N(us), config.threads) | ||
blocks = cld(get_N(us), threads) | ||
for t in 1:n_trials | ||
et = CUDA.@elapsed begin | ||
for i in 1:nreps # reduce variance / impact of launch latency | ||
kernel(X,Y,us; threads, blocks) | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
end | ||
push_info(bm; kernel_time_s=e/nreps, nreps, caller = @caller_name(@__FILE__), problem_size = size(us), n_reads_writes=4) | ||
return nothing | ||
end; | ||
function soa_cart_index_kernel!(X, Y, us) | ||
@inbounds begin | ||
I = (CUDA.blockIdx().x - Int32(1)) * CUDA.blockDim().x + CUDA.threadIdx().x | ||
if I ≤ get_N(us) | ||
CI = CartesianIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us))) | ||
(y1,) = Y | ||
(x1, x2, x3) = X | ||
y1[CI[I]] = add3(x1[CI[I]], x2[CI[I]], x3[CI[I]]) | ||
end | ||
end | ||
return nothing | ||
end; | ||
|
||
function soa_linear_index!(X, Y, us; nreps = 1, bm=nothing, n_trials = 30) | ||
e = Inf | ||
if first(Y) isa Array | ||
for t in 1:n_trials | ||
et = Base.@elapsed begin | ||
for i in 1:nreps | ||
(y1,) = Y | ||
(x1, x2, x3) = X | ||
@inbounds @simd for I in 1:get_N(us) | ||
y1[I] = add3(x1[I], x2[I], x3[I]) | ||
end | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
else | ||
kernel = CUDA.@cuda always_inline = true launch = false soa_linear_index_kernel!(X,Y,us) | ||
config = CUDA.launch_configuration(kernel.fun) | ||
threads = min(get_N(us), config.threads) | ||
blocks = cld(get_N(us), threads) | ||
for t in 1:n_trials | ||
et = CUDA.@elapsed begin | ||
for i in 1:nreps # reduce variance / impact of launch latency | ||
kernel(X,Y,us; threads, blocks) | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
end | ||
push_info(bm; kernel_time_s=e/nreps, nreps, caller = @caller_name(@__FILE__), problem_size = size(us), n_reads_writes=4) | ||
return nothing | ||
end; | ||
function soa_linear_index_kernel!(X, Y, us) | ||
@inbounds begin | ||
I = (CUDA.blockIdx().x - Int32(1)) * CUDA.blockDim().x + CUDA.threadIdx().x | ||
if I ≤ get_N(us) | ||
(y1,) = Y | ||
(x1, x2, x3) = X | ||
y1[I] = add3(x1[I], x2[I], x3[I]) | ||
end | ||
end | ||
return nothing | ||
end; | ||
|
||
end # module | ||
|
||
import .BenchmarkFieldLastIndex as FLD | ||
|
||
function fill_with_rand!(arr) | ||
FT = eltype(arr) | ||
T = typeof(arr) | ||
s = size(arr) | ||
arr .= T(rand(FT, s)) | ||
end | ||
|
||
using CUDA | ||
using Test | ||
@testset "Field last dim benchmark" begin | ||
bm = FLD.Benchmark(;problem_size=(63,4,4,5400,1), float_type=Float32) # size(problem_size, 4) == 1 to avoid double counting reads/writes | ||
ArrayType = CUDA.CuArray; | ||
# ArrayType = Base.identity; | ||
arr(float_type, problem_size, T) = T(zeros(float_type, problem_size...)) | ||
|
||
s = (63,4,4,5400,3); | ||
sY = (63,4,4,5400,1); | ||
st = (63,4,4,5400); | ||
ndofs = prod(st); | ||
us = FLD.UniversalSizesStatic(s[1], s[2], s[end-1]); | ||
|
||
X_aos = arr(bm.float_type, s, ArrayType); | ||
Y_aos = arr(bm.float_type, sY, ArrayType); | ||
X_aos_ref = arr(bm.float_type, s, ArrayType); | ||
Y_aos_ref = arr(bm.float_type, sY, ArrayType); | ||
X_soa = ntuple(_ -> arr(bm.float_type, st, ArrayType), 3); | ||
Y_soa = ntuple(_ -> arr(bm.float_type, st, ArrayType), 1); | ||
fill_with_rand!(X_aos) | ||
fill_with_rand!(Y_aos) | ||
X_aos_ref .= X_aos | ||
Y_aos_ref .= Y_aos | ||
for i in 1:3; X_soa[i] .= X_aos[:,:,:,:, i]; end | ||
for i in 1:1; Y_soa[i] .= Y_aos[:,:,:,:, i]; end | ||
@info "ArrayType = $ArrayType" | ||
|
||
FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; n_trials = 1, nreps = 1) | ||
FLD.aos_lin_offset!(X_aos, Y_aos, us; n_trials = 1, nreps = 1) | ||
FLD.soa_linear_index!(X_soa, Y_soa, us; n_trials = 1, nreps = 1) | ||
|
||
@test all(X_aos .== X_aos_ref) | ||
@test all(Y_aos .== Y_aos_ref) | ||
for i in 1:3; @test all(X_soa[i] .== X_aos_ref[:,:,:,:,i]); end | ||
for i in 1:1; @test all(Y_soa[i] .== Y_aos_ref[:,:,:,:,i]); end | ||
|
||
FLD.soa_cart_index!(X_soa, Y_soa, us; n_trials = 1, nreps = 1) | ||
|
||
for i in 1:3; @test all(X_soa[i] .== X_aos_ref[:,:,:,:,i]); end | ||
for i in 1:1; @test all(Y_soa[i] .== Y_aos_ref[:,:,:,:,i]); end | ||
|
||
FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) | ||
FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) | ||
FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) | ||
FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) | ||
|
||
FLD.tabulate_benchmark(bm) | ||
end | ||
|
||
# #! format: on |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.