Featured on Claude, try it out here: https://claude.ai/directory/ant.dir.gh.cicatriiz.pophive
A Model Context Protocol (MCP) server that provides access to PopHIVE (Population Health Information Visual Explorer) public health data from Yale School of Public Health. This server exposes comprehensive health surveillance data including immunizations, respiratory diseases, and chronic diseases through standardized MCP tools, resources, and prompts.
🎯 Production-Ready: All critical bugs fixed, enhanced error handling, and comprehensive dataset metadata included.
📦 Desktop Extension Ready: Fully compliant with Anthropic's Desktop Extension (DXT) specification for one-click installation in Claude Desktop and other MCP-enabled applications.
PopHIVE (Population Health Information Visual Explorer) is Yale's comprehensive platform that aggregates near real-time public health data from authoritative sources including CDC surveillance systems, Epic Cosmos EHR networks, and Google Health Trends. It's an invaluable resource for epidemiologists, researchers, and public health professionals.
👉 Explore PopHIVE: https://www.pophive.org/
Implemented scrapers for three new datasets:
Hospital Capacity: Fetches state-level hospital utilization data from HealthData.gov.
Injury & Overdose: Fetches national-level injury and overdose death data from data.cdc.gov.
Youth Mental Health ED Visits: Fetches national-level data on youth mental health-related emergency department visits from data.cdc.gov.
Implemented a parallel, batched initial fetch for the hospital capacity dataset to significantly speed up the first-time data download.
Added incremental update logic to all scrapers to only fetch new data, reducing subsequent load times.
Corrected date parsing logic in the analysis tools to robustly handle various date formats across all datasets.
Fixed an issue where the hospital capacity scraper was not fetching all records.
PopHIVE aggregates near real-time health data from multiple authoritative sources:
- CDC National Immunization Survey (NIS): Gold-standard vaccination coverage data
- Epic Cosmos EHR Network: Real-world clinical data from electronic health records
- CDC Laboratory Surveillance (NREVSS): Respiratory virus test positivity rates
- CDC Wastewater Surveillance (NWWS): Environmental viral monitoring
- Google Health Trends: Population behavior and symptom search patterns
- filter_data: Filter datasets by state, date range, demographics, and conditions
- compare_states: Compare health metrics across multiple states with statistical analysis
- time_series_analysis: Analyze trends over time with aggregation options
- get_available_datasets: Comprehensive catalog of all available datasets
- search_health_data: Search across datasets for specific conditions or keywords
- dataset://immunizations_nis: CDC National Immunization Survey data
- dataset://immunizations_epic: Epic Cosmos immunization data by demographics
- dataset://respiratory_ed: Emergency department visits for respiratory viruses
- dataset://respiratory_lab: Laboratory test positivity rates
- dataset://respiratory_wastewater: Wastewater viral surveillance data
- dataset://respiratory_trends: Google search trends for respiratory symptoms
- dataset://chronic_obesity: Obesity prevalence by state and age group
- dataset://chronic_diabetes: Diabetes prevalence and glycemic control data
- dataset://hospital_capacity: HHS hospital capacity data
- dataset://injury_overdose: CDC injury and overdose data
- dataset://youth_ed_mental_health: CDC youth mental health ED visit data
- immunization_gaps: Analyze vaccination coverage gaps by demographics
- respiratory_surge_detection: Detect and analyze respiratory disease surges
- chronic_disease_trends: Analyze chronic disease prevalence trends
- multi_source_analysis: Comprehensive analysis integrating multiple data sources
For Claude Desktop users:
- Download the
.dxt
file from the releases page - Double-click the file to open with Claude Desktop
- Click "Install" in the installation dialog
- Configure any required settings (update frequency, cache size)
- The extension will be automatically available in Claude Desktop
For other MCP-enabled applications:
- Use the same
.dxt
file with any application supporting Desktop Extensions - Follow your application's extension installation process
Prerequisites:
- Node.js 18+
- npm or yarn
Setup:
- Clone and install dependencies:
git clone <repository-url>
cd pophive-mcp-server
npm install
- Configure environment (optional):
# Create .env file for custom configuration
echo "DATA_CACHE_DIR=./data" > .env
echo "UPDATE_FREQUENCY=daily" >> .env
- Test the server:
npm test
- Start the server:
npm start
Create a Desktop Extension from source:
- Install DXT CLI tools:
npm install -g @anthropic-ai/dxt
- Clone and prepare:
git clone <repository-url>
cd pophive-mcp-server
npm install
- Package as extension:
dxt pack
- Install the generated
.dxt
file in Claude Desktop or other MCP applications
Variable | Default | Description |
---|---|---|
DATA_CACHE_DIR |
./data |
Directory for cached data files |
UPDATE_FREQUENCY |
daily |
Data refresh frequency (hourly , daily , weekly ) |
NODE_ENV |
development |
Environment mode |
Add to your MCP client configuration (e.g., Claude Desktop):
{
"mcpServers": {
"pophive": {
"command": "node",
"args": ["server/index.js"],
"cwd": "/path/to/pophive-mcp-server"
}
}
}
Choose the right dataset for your analysis:
Dataset | Geographic Level | Best Use Cases | Date Range | Update Frequency | Key Limitations |
---|---|---|---|---|---|
immunizations_nis |
National + State | National vaccination trends, state comparisons | 2019-2024 | Annual | Survey data, limited demographics |
immunizations_epic |
National + State | Real-world vaccination patterns, insurance analysis | 2020-2024 | Monthly | EHR network bias |
respiratory_ed |
National + State | Emergency department surveillance, outbreak detection | 2020-2024 | Weekly | Healthcare utilization only |
respiratory_lab |
National only | Clinical test positivity, laboratory surveillance | 2020-2024 | Weekly | National aggregates only |
respiratory_wastewater |
Regional | Environmental surveillance, early warning | 2022-2024 | Weekly | Limited geographic coverage |
respiratory_trends |
National + State | Population behavior, symptom searches | 2020-2024 | Weekly | Behavioral proxy, not clinical |
chronic_obesity |
National + State | Obesity prevalence, chronic disease tracking | 2020-2024 | Quarterly | Clinical populations only |
chronic_diabetes |
National + State | Diabetes management, glycemic control | 2020-2024 | Quarterly | Clinical populations only |
hospital_capacity |
State | Hospital utilization, bed capacity, staffing shortages | 2020-2024 | Daily | COVID-era focus |
injury_overdose |
National | Drug overdoses, homicides, suicides | 2019-2025 | Monthly/Quarterly | National aggregates only |
youth_ed_mental_health |
National | Youth mental health ED visits, demographic trends | 2019-2025 | Monthly | National aggregates only |
For national trends: Use immunizations_nis
, respiratory_lab
, or any dataset with geography="national"
For state comparisons: Use respiratory_ed
, chronic_obesity
, chronic_diabetes
, or immunizations_nis
For real-time surveillance: Use respiratory_ed
, respiratory_wastewater
, or respiratory_trends
For clinical outcomes: Use immunizations_epic
, chronic_obesity
, or chronic_diabetes
// ✅ WORKING: Filter immunization data for California
{
"tool": "filter_data",
"arguments": {
"dataset": "immunizations_nis",
"state": "CA"
}
}
// ✅ WORKING: Filter national immunization data
{
"tool": "filter_data",
"arguments": {
"dataset": "immunizations_nis",
"state": "US"
}
}
// ❌ AVOID: This will return 0 results
{
"tool": "filter_data",
"arguments": {
"dataset": "respiratory_lab",
"state": "CA" // respiratory_lab only has national data
}
}
// ✅ WORKING: Compare obesity rates across states
{
"tool": "compare_states",
"arguments": {
"dataset": "chronic_obesity",
"states": ["CA", "TX", "FL", "NY"],
"metric": "prevalence_rate",
"time_period": "latest"
}
}
// ✅ WORKING: Compare vaccination coverage
{
"tool": "compare_states",
"arguments": {
"dataset": "immunizations_nis",
"states": ["California", "Texas", "New York"], // Full names work too
"metric": "coverage_rate"
}
}
// ✅ WORKING: Analyze national respiratory trends
{
"tool": "time_series_analysis",
"arguments": {
"dataset": "respiratory_ed",
"metric": "ed_visits_per_100k",
"geography": "national", // Use "national" for US-level data
"aggregation": "weekly"
}
}
// ✅ WORKING: Analyze state-level trends
{
"tool": "time_series_analysis",
"arguments": {
"dataset": "respiratory_ed",
"metric": "ed_visits_per_100k",
"geography": "CA",
"start_date": "2024-01-01",
"end_date": "2024-12-01"
}
}
// ✅ WORKING: Search with national geography
{
"tool": "search_health_data",
"arguments": {
"query": "RSV",
"geography": "national" // Fixed: Use "national" instead of "US"
}
}
// ✅ WORKING: Search specific datasets
{
"tool": "search_health_data",
"arguments": {
"query": "vaccination coverage",
"datasets": ["immunizations_nis", "immunizations_epic"]
}
}
// ✅ WORKING: Generate immunization gap analysis
{
"prompt": "immunization_gaps",
"arguments": {
"state": "Texas",
"demographic_focus": "insurance"
}
}
// ✅ WORKING: Detect respiratory surges
{
"prompt": "respiratory_surge_detection",
"arguments": {
"region": "California",
"virus_type": "RSV",
"time_period": "last_4_weeks"
}
}
Cause: Geographic mismatch or dataset limitations
Solutions:
- Check dataset capabilities: Use
get_available_datasets
to see supported geographies - Use correct geography values:
- For national data:
"geography": "national"
(not "US") - For states: Use state codes ("CA") or full names ("California")
- For national data:
- Try alternative datasets: Some datasets only support national-level analysis
// ❌ Problem: Wrong geography for national data
{
"tool": "search_health_data",
"arguments": {
"query": "influenza",
"geography": "US" // Should be "national"
}
}
// ✅ Solution: Use correct geography
{
"tool": "search_health_data",
"arguments": {
"query": "influenza",
"geography": "national"
}
}
Cause: Dataset only contains national-level data
Solutions:
- Check dataset metadata first using
get_available_datasets
- Use state-capable datasets:
respiratory_ed
,chronic_obesity
,chronic_diabetes
,immunizations_nis
- Switch to national analysis for datasets like
respiratory_lab
Cause: Incorrect metric name or dataset mismatch
Solutions:
- Use dataset-appropriate metrics:
- Immunizations:
coverage_rate
,sample_size
- Respiratory:
ed_visits_per_100k
,positivity_rate
- Chronic:
prevalence_rate
,patient_count
- Immunizations:
- Check sample data using
get_available_datasets
withinclude_sample: true
// National vaccination trends
{
"tool": "time_series_analysis",
"arguments": {
"dataset": "immunizations_nis",
"metric": "coverage_rate",
"geography": "national"
}
}
// State vaccination comparison
{
"tool": "compare_states",
"arguments": {
"dataset": "immunizations_nis",
"states": ["CA", "TX", "NY", "FL"],
"metric": "coverage_rate"
}
}
// Emergency department trends
{
"tool": "filter_data",
"arguments": {
"dataset": "respiratory_ed",
"state": "CA",
"condition": "RSV"
}
}
// National lab surveillance
{
"tool": "time_series_analysis",
"arguments": {
"dataset": "respiratory_lab",
"metric": "positivity_rate",
"geography": "national"
}
}
// Obesity prevalence by state
{
"tool": "filter_data",
"arguments": {
"dataset": "chronic_obesity",
"state": "TX",
"age_group": "18-64"
}
}
// Diabetes trends
{
"tool": "time_series_analysis",
"arguments": {
"dataset": "chronic_diabetes",
"metric": "prevalence_rate",
"geography": "CA"
}
}
- NIS Data: Household survey, gold standard for coverage rates
- Epic Cosmos: EHR data with demographic breakdowns
- Update Frequency: Annual (NIS), Monthly (Epic)
- Geographic Level: State
- Quality: High confidence, large sample sizes
- ED Visits: Near real-time healthcare utilization
- Lab Data: Clinical test positivity rates
- Wastewater: Environmental viral monitoring (early indicator)
- Search Trends: Population behavior signals
- Update Frequency: Weekly
- Quality: High for clinical data, moderate for environmental/behavioral
- Source: Epic Cosmos EHR network
- Metrics: Clinical measurements (BMI, HbA1c)
- Update Frequency: Quarterly
- Geographic Level: State with age stratification
- Quality: High - real-world clinical data
Filter datasets by various criteria.
Parameters:
dataset
(required): Dataset identifierstate
(optional): State code or namestart_date
(optional): Start date (YYYY-MM-DD)end_date
(optional): End date (YYYY-MM-DD)age_group
(optional): Age group filtercondition
(optional): Condition/metric filter
Compare health metrics across multiple states.
Parameters:
dataset
(required): Dataset identifierstates
(required): Array of state codes/namesmetric
(required): Metric to comparetime_period
(optional): Time period for comparison
Analyze trends over time.
Parameters:
dataset
(required): Dataset identifiermetric
(required): Metric to analyzegeography
(optional): Geographic focusstart_date
(optional): Analysis start dateend_date
(optional): Analysis end dateaggregation
(optional): Time aggregation (weekly
,monthly
,quarterly
,yearly
)
All resources return JSON data with standardized schemas:
// Example immunization record
{
"geography": "CA",
"year": 2024,
"vaccine": "MMR",
"age_group": "19-35 months",
"coverage_rate": 96.1,
"sample_size": 1876,
"source": "CDC NIS"
}
// Example respiratory surveillance record
{
"geography": "US",
"date": "2024-12-01",
"week": "2024-48",
"virus": "RSV",
"ed_visits_per_100k": 3.8,
"percent_change": 15.2,
"source": "Epic Cosmos"
}
pophive-mcp-server/
├── server/
│ ├── index.js # Main MCP server
│ ├── utils/
│ │ └── data-loader.js # Data loading and caching
│ ├── tools/
│ │ └── analysis-tools.js # MCP tool implementations
│ ├── prompts/
│ │ └── prompt-templates.js # MCP prompt templates
│ └── scrapers/
│ ├── immunizations.js # Immunization data scraper
│ ├── respiratory.js # Respiratory data scraper
│ └── chronic-diseases.js # Chronic disease data scraper
├── data/ # Cached data files
├── package.json
├── manifest.json # MCP server manifest
└── README.md
- Create a scraper in
server/scrapers/
- Update data loader to include new datasets
- Add resource mappings in the main server
- Update tool logic to handle new data types
- Create prompts for new analysis types
# Run all tests
npm test
# Test specific components
npm run test:tools
npm run test:scrapers
npm run test:integration
The server automatically refreshes data based on the UPDATE_FREQUENCY
setting. Manual refresh:
npm run refresh-data
Server won't start:
- Check Node.js version (18+ required)
- Verify all dependencies installed:
npm install
- Check for port conflicts
No data returned:
- Data may be initializing on first run
- Check data directory permissions
- Verify network connectivity for scraping
MCP client connection issues:
- Verify server path in client configuration
- Check server logs for errors
- Ensure MCP client supports stdio transport
Server logs are written to stderr and include:
- Data scraping activities
- Tool execution results
- Error messages and stack traces
Enable verbose logging:
DEBUG=pophive:* npm start
- Fork the repository
- Create a feature branch
- Make changes with tests
- Submit a pull request
- Use ESLint configuration
- Follow existing patterns
- Add JSDoc comments for public APIs
- Include error handling
MIT License - see LICENSE file for details.
- Issues: GitHub Issues
- Documentation: This README and inline code comments
- Data Questions: Refer to original PopHIVE sources
- Yale School of Public Health for PopHIVE initiative
- CDC for surveillance data systems
- Epic Systems for Cosmos EHR network data
- Model Context Protocol community for standards