-
Notifications
You must be signed in to change notification settings - Fork 2
feat(instrumentation): improvements to the LangChain integration #57
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Example with a simple Langchain RAG : import { HNSWLib } from "@langchain/community/vectorstores/hnswlib";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { PromptTemplate } from "@langchain/core/prompts";
import {
RunnablePassthrough,
RunnableSequence,
} from "@langchain/core/runnables";
import { ChatOpenAI, OpenAIEmbeddings } from "@langchain/openai";
import "dotenv/config";
import { formatDocumentsAsString } from "langchain/util/document";
import { LiteralClient } from "@literalai/client";
const literalClient = new LiteralClient();
const cb = literalClient.instrumentation.langchain.literalCallback();
const model = new ChatOpenAI({});
async function main() {
const vectorStore = await HNSWLib.fromTexts(
["mitochondria is the powerhouse of the cell"],
[{ id: 1 }],
new OpenAIEmbeddings()
);
const retriever = vectorStore.asRetriever();
const prompt =
PromptTemplate.fromTemplate(`Answer the question based only on the following context:
{context}
Question: {question}`);
const chain = RunnableSequence.from([
{
context: retriever.pipe(formatDocumentsAsString) as any,
question: new RunnablePassthrough(),
},
prompt,
model,
new StringOutputParser(),
]);
const result = await chain.invoke("What is the powerhouse of the cell?", {
callbacks: [cb],
runName: "Standalone RAG Run",
});
console.log(result);
await literalClient.thread({ name: "Test RAG Thread" }).wrap(async () => {
const result = await chain.invoke("What is the powerhouse of the cell?", {
callbacks: [cb],
});
console.log(result);
});
await literalClient.run({ name: "Test RAG Run" }).wrap(async () => {
const result = await chain.invoke("What is the powerhouse of the cell?", {
callbacks: [cb],
});
console.log(result);
const result2 = await chain.invoke(
"What is the air-speed velocity of an unladen swallow?",
{
callbacks: [cb],
}
);
console.log(result2);
});
}
main(); |
Simple LangGraph example with one tool call : import { AIMessage, BaseMessage, HumanMessage } from "@langchain/core/messages";
import { tool } from "@langchain/core/tools";
import { MemorySaver, StateGraph, StateGraphArgs } from "@langchain/langgraph";
import { ToolNode } from "@langchain/langgraph/prebuilt";
import { ChatOpenAI } from "@langchain/openai";
import { green, yellow } from "cli-color";
import "dotenv/config";
import { z } from "zod";
import { LiteralClient } from "@literalai/client";
const literalClient = new LiteralClient();
const cb = literalClient.instrumentation.langchain.literalCallback();
// Define the state interface
interface AgentState {
messages: BaseMessage[];
}
// Define the graph state
const graphState: StateGraphArgs<AgentState>["channels"] = {
messages: {
reducer: (x: BaseMessage[], y: BaseMessage[]) => x.concat(y),
},
};
// Define the tools for the agent to use
const weatherTool = tool(
async ({ query }) => {
// This is a placeholder for the actual implementation
if (
query.toLowerCase().includes("sf") ||
query.toLowerCase().includes("san francisco")
) {
return "It's 60 degrees and foggy.";
}
return "It's 90 degrees and sunny.";
},
{
name: "weather",
description: "Call to get the current weather for a location.",
schema: z.object({
query: z.string().describe("The query to use in your search."),
}),
}
);
const tools = [weatherTool];
const toolNode = new ToolNode<AgentState>(tools);
const model = new ChatOpenAI({
model: "gpt-4o-mini",
temperature: 0,
}).bindTools(tools);
// Define the function that determines whether to continue or not
function shouldContinue(state: AgentState) {
const messages = state.messages;
const lastMessage = messages[messages.length - 1] as AIMessage;
// If the LLM makes a tool call, then we route to the "tools" node
if (lastMessage.tool_calls?.length) {
return "tools";
}
// Otherwise, we stop (reply to the user)
return "__end__";
}
// Define the function that calls the model
async function callModel(state: AgentState) {
const messages = state.messages;
const response = await model.invoke(messages);
// We return a list, because this will get added to the existing list
return { messages: [response] };
}
// Define a new graph
const workflow = new StateGraph<AgentState>({ channels: graphState })
.addNode("agent", callModel)
.addNode("tools", toolNode)
.addEdge("__start__", "agent")
.addConditionalEdges("agent", shouldContinue)
.addEdge("tools", "agent");
// Initialize memory to persist state between graph runs
const checkpointer = new MemorySaver();
// Finally, we compile it!
// This compiles it into a LangChain Runnable.
const app = workflow.compile({ checkpointer });
async function main() {
console.log(green("> what is an LLM"));
const response = await model.invoke([new HumanMessage("what is an LLM")], {
callbacks: [cb],
});
console.log(yellow(response.content));
literalClient.thread({ name: "Weather Wrap" }).wrap(async () => {
console.log(green("> what is the weather in sf"));
// Use the Runnable
const finalState = await app.invoke(
{ messages: [new HumanMessage("what is the weather in sf")] },
{
configurable: { thread_id: "Weather Thread" },
runName: "weather",
callbacks: [cb],
}
);
console.log(
yellow(finalState.messages[finalState.messages.length - 1].content)
);
console.log(green("> what about ny"));
const nextState = await app.invoke(
{ messages: [new HumanMessage("what about ny")] },
{
configurable: { thread_id: "Weather Thread" },
runName: "weather",
callbacks: [cb],
}
);
console.log(
yellow(nextState.messages[nextState.messages.length - 1].content)
);
});
}
main(); |
Complex multi-agent LangGraph workflow : import { TavilySearchResults } from "@langchain/community/tools/tavily_search";
import { BaseMessage } from "@langchain/core/messages";
import { HumanMessage } from "@langchain/core/messages";
import {
ChatPromptTemplate,
MessagesPlaceholder,
} from "@langchain/core/prompts";
import { Runnable } from "@langchain/core/runnables";
import { RunnableConfig } from "@langchain/core/runnables";
import { DynamicStructuredTool } from "@langchain/core/tools";
import { END, StateGraphArgs } from "@langchain/langgraph";
import { START, StateGraph } from "@langchain/langgraph";
import { ChatOpenAI } from "@langchain/openai";
import { createCanvas } from "canvas";
import "dotenv/config";
import { writeFileSync } from "fs";
import { AgentExecutor, createOpenAIToolsAgent } from "langchain/agents";
import { JsonOutputToolsParser } from "langchain/output_parsers";
import { z } from "zod";
import { LiteralClient } from "@literalai/client";
const literalClient = new LiteralClient();
const cb = literalClient.instrumentation.langchain.literalCallback({
chainTypesToIgnore: ["ChatPromptTemplate"],
});
interface AgentStateChannels {
messages: BaseMessage[];
// The agent node that last performed work
next: string;
}
// This defines the object that is passed between each node
// in the graph. We will create different nodes for each agent and tool
const agentStateChannels: StateGraphArgs<AgentStateChannels>["channels"] = {
messages: {
value: (x?: BaseMessage[], y?: BaseMessage[]) => (x ?? []).concat(y ?? []),
default: () => [],
},
next: {
value: (x?: string, y?: string) => y ?? x ?? END,
default: () => END,
},
};
const chartTool = new DynamicStructuredTool({
name: "generate_bar_chart",
description:
"Generates a bar chart from an array of data points using D3.js and displays it for the user.",
schema: z.object({
data: z
.object({
label: z.string(),
value: z.number(),
})
.array(),
}),
func: async ({ data }) => {
const d3 = await import("d3");
console.log("test test test");
const width = 500;
const height = 500;
const margin = { top: 20, right: 30, bottom: 30, left: 40 };
const canvas = createCanvas(width, height);
const ctx = canvas.getContext("2d");
const x = d3
.scaleBand()
.domain(data.map((d) => d.label))
.range([margin.left, width - margin.right])
.padding(0.1);
const y = d3
.scaleLinear()
.domain([0, d3.max(data, (d) => d.value) ?? 0])
.nice()
.range([height - margin.bottom, margin.top]);
const colorPalette = [
"#e6194B",
"#3cb44b",
"#ffe119",
"#4363d8",
"#f58231",
"#911eb4",
"#42d4f4",
"#f032e6",
"#bfef45",
"#fabebe",
];
data.forEach((d, idx) => {
ctx.fillStyle = colorPalette[idx % colorPalette.length];
ctx.fillRect(
x(d.label) ?? 0,
y(d.value),
x.bandwidth(),
height - margin.bottom - y(d.value)
);
});
ctx.beginPath();
ctx.strokeStyle = "black";
ctx.moveTo(margin.left, height - margin.bottom);
ctx.lineTo(width - margin.right, height - margin.bottom);
ctx.stroke();
ctx.textAlign = "center";
ctx.textBaseline = "top";
x.domain().forEach((d) => {
const xCoord = (x(d) ?? 0) + x.bandwidth() / 2;
ctx.fillText(d, xCoord, height - margin.bottom + 6);
});
ctx.beginPath();
ctx.moveTo(margin.left, height - margin.top);
ctx.lineTo(margin.left, height - margin.bottom);
ctx.stroke();
ctx.textAlign = "right";
ctx.textBaseline = "middle";
const ticks = y.ticks();
ticks.forEach((d) => {
const yCoord = y(d); // height - margin.bottom - y(d);
ctx.moveTo(margin.left, yCoord);
ctx.lineTo(margin.left - 6, yCoord);
ctx.stroke();
ctx.fillText(d.toString(), margin.left - 8, yCoord);
});
console.log(canvas.toBuffer());
writeFileSync("chart.png", canvas.toBuffer());
return "Chart has been generated and displayed to the user!";
},
});
const tavilyTool = new TavilySearchResults();
async function createAgent(
llm: ChatOpenAI,
tools: any[],
systemPrompt: string
): Promise<Runnable> {
// Each worker node will be given a name and some tools.
const prompt = await ChatPromptTemplate.fromMessages([
["system", systemPrompt],
new MessagesPlaceholder("messages"),
new MessagesPlaceholder("agent_scratchpad"),
]);
const agent = await createOpenAIToolsAgent({
llm: llm as any,
tools,
prompt: prompt as any,
});
return new AgentExecutor({ agent, tools }) as any;
}
const members = ["researcher", "chart_generator"];
const systemPrompt =
"You are a supervisor tasked with managing a conversation between the" +
" following workers: {members}. Given the following user request," +
" respond with the worker to act next. Each worker will perform a" +
" task and respond with their results and status. When finished," +
" respond with FINISH.";
const options = [END, ...members];
// Define the routing function
const functionDef = {
name: "route",
description: "Select the next role.",
parameters: {
title: "routeSchema",
type: "object",
properties: {
next: {
title: "Next",
anyOf: [{ enum: options }],
},
},
required: ["next"],
},
};
const toolDef = {
type: "function",
function: functionDef,
} as const;
const prompt = ChatPromptTemplate.fromMessages([
["system", systemPrompt],
new MessagesPlaceholder("messages"),
[
"system",
"Given the conversation above, who should act next?" +
" Or should we FINISH? Select one of: {options}",
],
]);
async function main() {
const formattedPrompt = await prompt.partial({
options: options.join(", "),
members: members.join(", "),
});
const llm = new ChatOpenAI({
modelName: "gpt-4o",
temperature: 0,
});
const supervisorChain = formattedPrompt
.pipe(
llm.bindTools([toolDef], {
tool_choice: { type: "function", function: { name: "route" } },
})
)
.pipe(new JsonOutputToolsParser() as any)
// select the first one
.pipe((x) => (x as Array<any>)[0].args);
// Recall llm was defined as ChatOpenAI above
// It could be any other language model
const researcherAgent = await createAgent(
llm,
[tavilyTool],
"You are a web researcher. You may use the Tavily search engine to search the web for" +
" important information, so the Chart Generator in your team can make useful plots."
);
const researcherNode = async (
state: AgentStateChannels,
config?: RunnableConfig
) => {
const result = await researcherAgent.invoke(state, {
...config,
callbacks: [cb],
runName: "Researcher",
configurable: { thread_id: "42" },
});
return {
messages: [
new HumanMessage({ content: result.output, name: "Researcher" }),
],
};
};
const chartGenAgent = await createAgent(
llm,
[chartTool],
"You excel at generating bar charts. Use the researcher's information to generate the charts."
);
const chartGenNode = async (
state: AgentStateChannels,
config?: RunnableConfig
) => {
const result = await chartGenAgent.invoke(state, {
...config,
callbacks: [cb],
runName: "Chart Generator",
configurable: { thread_id: "42" },
});
return {
messages: [
new HumanMessage({ content: result.output, name: "ChartGenerator" }),
],
};
};
// 1. Create the graph
const workflow = new StateGraph<AgentStateChannels, unknown, string>({
channels: agentStateChannels as any,
}) // 2. Add the nodes; these will do the work
.addNode("researcher", researcherNode as any)
.addNode("chart_generator", chartGenNode as any)
.addNode("supervisor", supervisorChain);
// 3. Define the edges. We will define both regular and conditional ones
// After a worker completes, report to supervisor
members.forEach((member) => {
workflow.addEdge(member as any, "supervisor");
});
workflow.addConditionalEdges(
"supervisor",
((x: AgentStateChannels) => x.next) as any
);
workflow.addEdge(START, "supervisor");
const graph = workflow.compile();
const visu = await graph.getGraph().drawMermaidPng();
const arrayBuffer = await visu.arrayBuffer();
writeFileSync("graph.png", Buffer.from(arrayBuffer));
// literalClient.run({ name: 'Multi-agent' }).wrap(async () => {
const streamResults = graph.stream(
{
messages: [
new HumanMessage({
content: "What were the 3 most popular tv shows in 2023?",
}),
],
},
{
recursionLimit: 100,
configurable: { thread_id: "42" },
runName: "supervisor",
callbacks: [cb],
}
);
for await (const output of await streamResults) {
if (!output?.__end__) {
console.log(output);
console.log("----");
}
}
// });
}
main(); |
Ran both examples, worked well for me! |
willydouhard
approved these changes
Aug 21, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Examples are below. To run them you should either :
import { LiteralClient } from './src';
(don't forget to add the required dependencies)npm run build
thennpm pack
(will create a tar.gz archive of the package)npm install ../path-to-ts-sdk/literalai......tar.gz