´´´ sudo docker start -ai 4499772f8cab pip install tqdm pip3 install --no-cache-dir ultralytics --no-deps # Install ultralytics without pulling its own dependencies
´´´
bu docker container indirdim , sudo docker pull nvcr.io/nvidia/l4t-ml:r35.2.1-py3
...... kodlar da çaliştridim
.. jett.py yukle
..su kod containernin içinde çaliştrimak isterim nasıl yaparım,
https://drive.google.com/file/d/1JbwLyqpFCXmftaJY1oap8Sa6KfjoWJta/view?usp=sharing
# Find where NVIDIA OpenCV is installed
find /usr -name "*opencv*" -type d 2>/dev/null
find /opt -name "*opencv*" -type d 2>/dev/null
# Check common NVIDIA locations
ls -la /usr/lib/aarch64-linux-gnu/ | grep opencv
ls -la /usr/local/lib/ | grep opencv
ls -la /opt/nvidia/ 2>/dev/null
# See current Python path
python3 -c "import sys; print('\n'.join(sys.path))"
# Check if OpenCV is importable
python3 -c "import cv2; print(cv2.__file__)"
If OpenCV is installed but not in Python path, add it:
# Find the OpenCV Python bindings
find /usr -name "cv2*.so" 2>/dev/null
# Typical locations for NVIDIA OpenCV on Jetson:
ls -la /usr/lib/python3/dist-packages/ | grep cv2
ls -la /usr/local/lib/python3.*/dist-packages/ | grep cv2
If OpenCV is installed but not linked properly:
# Find the OpenCV installation
OPENCV_PATH=$(find /usr -name "cv2*.so" 2>/dev/null | head -1)
echo "Found OpenCV at: $OPENCV_PATH"
# Create symbolic link in Python site-packages
python3 -c "import site; print(site.getsitepackages())"
# Create the link (adjust path as needed)
sudo ln -sf $OPENCV_PATH /usr/local/lib/python3.8/dist-packages/
Add to your ~/.bashrc
:
echo 'export PYTHONPATH=/usr/lib/python3/dist-packages:$PYTHONPATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/lib/aarch64-linux-gnu:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
# Remove and reinstall with Python integration
sudo apt remove python3-opencv
sudo apt install python3-opencv python3-opencv-contrib
# See what files nvidia-opencv installed
dpkg -L nvidia-opencv
# Check if Python bindings are included
dpkg -L python3-opencv 2>/dev/null || echo "python3-opencv not installed"
If OpenCV libraries exist but Python can’t find them:
# Create a .pth file to add the path
echo "/usr/lib/python3/dist-packages" | sudo tee /usr/local/lib/python3.8/dist-packages/opencv.pth
# Or set PYTHONPATH temporarily
export PYTHONPATH=/usr/lib/python3/dist-packages:$PYTHONPATH
python3 -c "import cv2; print('Success!')"
python3 -c "
import cv2
print('OpenCV version:', cv2.__version__)
print('OpenCV location:', cv2.__file__)
build_info = cv2.getBuildInformation()
print('CUDA support:', 'CUDA: YES' in build_info)
"
Check if OpenCV is actually installed and working:
# Check Python OpenCV
python3 -c "import cv2; print(cv2.__version__); print(cv2.getBuildInformation())"
# Check system OpenCV libraries
pkg-config --modversion opencv4
# or
pkg-config --modversion opencv
# Check installed packages
dpkg -l | grep opencv
# Find OpenCV libraries
find /usr -name "*opencv*" -type f 2>/dev/null | head -10
# Check library paths
ldconfig -p | grep opencv
The issue might be missing dependencies. Try this approach:
# Clean up completely
sudo apt purge *opencv* *libopencv*
sudo apt autoremove
sudo apt autoclean
# Install dependencies first
sudo apt update
sudo apt install python3-dev python3-numpy
sudo apt install libgtk-3-dev
sudo apt install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
# Install OpenCV with all components
sudo apt install python3-opencv
sudo apt install libopencv-dev libopencv-contrib-dev
sudo apt install opencv-data
# Verify installation
python3 -c "import cv2; print('OpenCV version:', cv2.__version__)"
If you have JetPack SDK Manager access:
# Check available JetPack components
sudo apt list --installed | grep jetpack
# Install OpenCV from JetPack
sudo apt install jetpack-sdk
Sometimes jtop caches information:
# Stop jtop service if running
sudo systemctl stop jtop
# Clear any cached data
sudo rm -rf ~/.jtop/
# Restart jtop
sudo jtop
If the packages still don’t work, here’s a minimal build:
# Install build dependencies
sudo apt install build-essential cmake git
sudo apt install python3-dev python3-numpy
# Download and build
cd ~
git clone https://github.com/opencv/opencv.git
cd opencv
git checkout 4.5.4 # Match your previous version
mkdir build && cd build
# Minimal build with CUDA
cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D WITH_CUDA=ON \
-D CUDA_ARCH_BIN=7.2 \
-D BUILD_TESTS=OFF \
-D BUILD_EXAMPLES=OFF \
-D PYTHON3_EXECUTABLE=/usr/bin/python3 \
..
make -j4
sudo make install
sudo ldconfig
# Check jtop source or config to see what it's looking for
python3 -c "
import cv2
print('OpenCV found at:', cv2.__file__)
print('Version:', cv2.__version__)
print('Build info available:', 'CUDA' in cv2.getBuildInformation())
"
Try these steps in order. The most likely issue is that jtop is looking for OpenCV in a specific location or the installation didn’t complete properly. Let me know what the verification commands show and I can help troubleshoot further.
Install a pre-built version with CUDA support:
# Remove current OpenCV
sudo apt purge *libopencv*
# Install OpenCV with CUDA support
sudo apt update
sudo apt install python3-opencv opencv-data libopencv-dev libopencv-contrib-dev
# Or try the NVIDIA-specific build
sudo apt install nvidia-opencv
The CUDA toolkit is installed but not in your system PATH. Add these lines to your ~/.bashrc
file:
echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
- File to modify: /home/cevheri/cevheri_algo/env/lib/python3.10/site-packages/ultralytics/nn/tasks.py
- Line to change: Around line 511 in the torch_safe_load function Change this line:
return torch.load(file, map_location='cpu'), file # load
return torch.load(file, map_location='cpu', weights_only=False), file # load
Jetson cihazlarda normal PC'lerde olduğu gibi pip ile PyTorch kuramamanızın birkaç temel nedeni var:
ARM64 vs x86_64: Jetson cihazları ARM64 işlemci kullanırken, çoğu PC x86_64 kullanır. PyPI'daki PyTorch'un önceden derlenmiş wheel'leri x86_64 mimarisi için yapılmıştır ve ARM64'te çalışmaz.
CUDA Sürüm Uyumluluğu: Jetson cihazları belirli CUDA sürümleri ile JetPack çalıştırır ve bu sürümler standart PyTorch wheel'lerinin derlendiği CUDA sürümleri ile eşleşmeyebilir.
NVIDIA, Jetson için özel PyTorch wheel'leri sağlar:
# JetPack 4.6+ için
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# Veya NVIDIA'nın doğrudan wheel'lerini kullanın
wget https://nvidia.box.com/shared/static/[belirli-wheel-linki].whl
pip3 install [indirilen-wheel].whl
NVIDIA PyTorch ile önceden hazırlanmış Docker container'ları sağlar:
sudo docker run -it --rm --runtime nvidia --network host nvcr.io/nvidia/l4t-pytorch:r35.2.1-pth2.0-py3
Bu birkaç saat sürer ama size en fazla kontrolü verir:
git clone --recursive https://github.com/pytorch/pytorch
cd pytorch
export USE_CUDA=1
export USE_CUDNN=1
python3 setup.py install
En kolay yaklaşım - JetPack genellikle AI/ML paketlerinde PyTorch'u içerir.