My developments for MTS ML CUP
Final solution: all features (aggregates (mean, median, min, max, std) by user_id (prices, counts, categorical features) + mean encoded (w2v + node2vec) url vectors) + 10 cv DANets averaging
Hardware:
CPU: Intel Xeon E5-2650V2
RAM: 64 Gb DDR3
GPU: RTX 3060 (12 Gb)
Place competition data into cameleogrey_mtsmlcup/data/raw
git clone https://github.com/CameleoGrey/cameleogrey_mtsmlcup.git
conda create -n mtsmlcup python=3.10
conda activate mtsmlcup
pip3 install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio===0.13.0+cu117 -f https://download.pytorch.org/whl/cu117/torch_stable.html
pip install -r requirements.txt
If you're using Eclipse IDE with PyDev plugin, make this inside project properties: Properties --> Resource --> Text file encoding --> Other --> UTF-8
pip install transformers sentence-transformers
pip install selenium
+ you need to install Chrome Driver for selenium
pip install "tensorflow<2.11"
- Download stellargraph package (https://github.com/stellargraph/stellargraph)
- Place stellargraph into envs/mtsmlcup/Lib/site-packages
- Move into stellargraph dir
- Inside setup.py comment #python_requires=">=3.6.0, <3.9.0",
- cd envs/mtsmlcup/Lib/site-packages/stellargraph
- pip install .