Providing the top-performing algorithms from the Brain Tumor Segmentation (BraTS) challenges, through an easy-to-use Python API powered by Docker.
- Access to top-performing algorithms from recent BraTS challenges
- Easy-to-use minimal API
- Extensive documentation and examples
With a Python 3.8+ environment, you can install BraTS orchestrator directly from PyPI:
pip install brats
Important
To run BraTS orchestrator, you require a Docker installation.
Many algorithms also require GPU support (NVIDIA Docker).
In case you do not have access to a CUDA-capable GPU, the overview tables in the Available Algorithms and Usage section indicate which algorithms are CPU compatible.
- Docker: Installation instructions on the official website
- NVIDIA Container Toolkit: Refer to the NVIDIA install guide and the official GitHub page
Adult Glioma Segmentation on pre-treatment brain MRI exams.
Usage example (code) and top 3 participants
from brats import AdultGliomaPreTreatmentSegmenter
from brats.constants import AdultGliomaPreTreatmentAlgorithms
segmenter = AdultGliomaPreTreatmentSegmenter(algorithm=AdultGliomaPreTreatmentAlgorithms.BraTS23_1, cuda_devices="0")
# these parameters are optional, by default the winning algorithm of 2023 will be used on cuda:0
segmenter.infer_single(
t1c="path/to/t1c.nii.gz",
t1n="path/to/t1n.nii.gz",
t2f="path/to/t2f.nii.gz",
t2w="path/to/t2w.nii.gz",
output_file="segmentation.nii.gz",
)
Note: If you're interested in Adult Glioma Segmentation, the BrainLes GlioMODA package may also be of interest.
Class: brats.AdultGliomaPreTreatmentSegmenter
(Docs)
Challenge Paper 2023: Link
Year | Rank | Author | Paper | CPU Support | Key Enum |
---|---|---|---|---|---|
2023 | 1st | André Ferreira, et al. | Link | ❌ | BraTS23_1 |
2023 | 2nd | Andriy Myronenko, et al. | N/A | ❌ | BraTS23_2 |
2023 | 3rd | Fadillah Adamsyah Maani, et al. | Link | ❌ | BraTS23_3 |
Adult Glioma Segmentation on post-Treatment brain MRI exams.
Usage example (code) and top 3 participants
from brats import AdultGliomaPostTreatmentSegmenter
from brats.constants import AdultGliomaPostTreatmentAlgorithms
segmenter = AdultGliomaPostTreatmentSegmenter(algorithm=AdultGliomaPostTreatmentAlgorithms.BraTS24_1, cuda_devices="0")
# these parameters are optional, by default the winning algorithm of 2024 will be used on cuda:0
segmenter.infer_single(
t1c="path/to/t1c.nii.gz",
t1n="path/to/t1n.nii.gz",
t2f="path/to/t2f.nii.gz",
t2w="path/to/t2w.nii.gz",
output_file="segmentation.nii.gz",
)
Class: brats.AdultGliomaPostTreatmentSegmenter
(Docs)
Challenge Paper 2024: Link
Year | Rank | Author | Paper | CPU Support | Key Enum |
---|---|---|---|---|---|
2024 | 1st | André Ferreira, et al. | N/A | ❌ | BraTS24_1 |
2024 | 2nd | Heejong Kim, et al. | Link | ❌ | BraTS24_2 |
2024 | 3rd | Adrian Celaya | N/A | ✅ | BraTS24_3 |
Adult Glioma Segmentation on brain MRI exams in Sub-Sahara-Africa patient population.
Usage example (code) and top 3 participants
from brats import AfricaSegmenter
from brats.constants import AfricaAlgorithms
segmenter = AfricaSegmenter(algorithm=AfricaAlgorithms.BraTS23_1, cuda_devices="0")
# these parameters are optional, by default the winning algorithm will be used on cuda:0
segmenter.infer_single(
t1c="path/to/t1c.nii.gz",
t1n="path/to/t1n.nii.gz",
t2f="path/to/t2f.nii.gz",
t2w="path/to/t2w.nii.gz",
output_file="segmentation.nii.gz",
)
Class: brats.AfricaSegmenter
(Docs)
Challenge Paper 2023 Link
Challenge Paper 2024: N/A
Year | Rank | Author | Paper | CPU Support | Key Enum |
---|---|---|---|---|---|
2024 | 1st | Abhijeet Parida, et al. | Link | ❌ | BraTS24_1 |
2024 | 2nd | Long Bai, et al. | Link | ✅ | BraTS24_2 |
2024 | 3rd | Sarim Hashmi, et al. | Link | ❌ | BraTS24_3 |
2023 | 1st | Andriy Myronenko, et al. | TODO | ❌ | BraTS23_1 |
2023 | 2nd | Alyssa R Amod, et al. | Link | ❌ | BraTS23_2 |
2023 | 3rd | Ziyan Huang, et al. | Link | ✅ | BraTS23_3 |
Segmentation of Meningioma on brain MRI exams.
Usage example (code) and top 3 participants
Unlike other segmentation challenges, the expected inputs for the Meningioma Segmentation Algorithms differ between years.
- 2023: All 4 modalities are used (t1c, t1n, t2f, t2w)
- 2024: Only t1c is used
Therefore, the usage differs slightly, depending on which algorithm is used. To understand why, please refer to the 2024 challenge manuscript.
from brats import MeningiomaSegmenter
from brats.constants import MeningiomaAlgorithms
### Example for 2023 algorithms
segmenter = MeningiomaSegmenter(algorithm=MeningiomaAlgorithms.BraTS23_1, cuda_devices="0")
# these parameters are optional, by default the winning algorithm will be used on cuda:0
segmenter.infer_single(
t1c="path/to/t1c.nii.gz",
t1n="path/to/t1n.nii.gz",
t2f="path/to/t2f.nii.gz",
t2w="path/to/t2w.nii.gz",
output_file="segmentation_23.nii.gz",
)
### Example for 2024 algorithms
segmenter = MeningiomaSegmenter(algorithm=MeningiomaAlgorithms.BraTS24_1, cuda_devices="0")
segmenter.infer_single(
t1c="path/to/t1c.nii.gz",
output_file="segmentation_24.nii.gz",
)
Class: brats.MeningiomaSegmenter
(Docs)
Challenge Paper 2024 Link
Challenge Paper 2023 Link
Year | Rank | Author | Paper | CPU Support | Key Enum |
---|---|---|---|---|---|
2024 | 1st | Valeria Abramova | N/A | ❌ | BraTS24_1 |
2024 | 2nd | Mehdi Astaraki | N/A | ❌ | BraTS24_2 |
2024 | 3rd | Andre Ferreira, et al. | Link | ✅ | BraTS24_3 |
2023 | 1st | Andriy Myronenko, et al. | N/A | ❌ | BraTS23_1 |
2023 | 2nd | Ziyan Huang, et al. | Link | ✅ | BraTS23_2 |
2023 | 3rd | Daniel Capell'an-Mart'in et al. | Link | ❌ | BraTS23_3 |
Segmentation on brain metastases on MRI exams for pre- and post-treatment cases.
Usage example (code) and top 3 participants
from brats import MetastasesSegmenter
from brats.constants import MetastasesAlgorithms
segmenter = MetastasesSegmenter(algorithm=MetastasesAlgorithms.BraTS23_1, cuda_devices="0")
# these parameters are optional, by default the winning algorithm will be used on cuda:0
segmenter.infer_single(
t1c="path/to/t1c.nii.gz",
t1n="path/to/t1n.nii.gz",
t2f="path/to/t2f.nii.gz",
t2w="path/to/t2w.nii.gz",
output_file="segmentation.nii.gz",
)
Note: If you're interested in Brain Metastases Segmentation, the BrainLes AURORA package may also be of interest.
Class: brats.MetastasesSegmenter
(Docs)
Challenge Paper 2023 Link
Year | Rank | Author | Paper | CPU Support | Key Enum |
---|---|---|---|---|---|
2023 | 1st | Andriy Myronenko, et al. | N/A | ❌ | BraTS23_1 |
2023 | 2nd | Siwei Yang, et al. | Link | ❌ | BraTS23_2 |
2023 | 3rd | Ziyan Huang, et al. | Link | ✅ | BraTS23_3 |
Segmentation of pediatric brain tumors on MRI exams.
Usage example (code) and top 3 participants
from brats import PediatricSegmenter
from brats.constants import PediatricAlgorithms
segmenter = PediatricSegmenter(algorithm=PediatricAlgorithms.BraTS23_1, cuda_devices="0")
# these parameters are optional, by default the winning algorithm will be used on cuda:0
segmenter.infer_single(
t1c="path/to/t1c.nii.gz",
t1n="path/to/t1n.nii.gz",
t2f="path/to/t2f.nii.gz",
t2w="path/to/t2w.nii.gz",
output_file="segmentation.nii.gz",
)
Note: If you're interested in Pediatric Segmentation, the BrainLes PeTu package may also be of interest.
Class: brats.PediatricSegmenter
(Docs)
Challenge Paper 2024 Link
Challenge Paper 2023 Link
Year | Rank | Author | Paper | CPU Support | Key Enum |
---|---|---|---|---|---|
2024 | 1st | Tim Mulvany, et al. | Link | ❌ | BraTS24_1 |
2024 | 2nd | Mehdi Astaraki | N/A | ❌ | BraTS24_2 |
2024 | 3rd | Sarim Hashmi, et al. | Link | ❌ | BraTS24_3 |
2023 | 1st | Zhifan Jiang et al. | Link | ❌ | BraTS23_1 |
2023 | 2nd | Andriy Myronenko, et al. | N/A | ❌ | BraTS23_2 |
2023 | 3rd | Yubo Zhou | Link | ❌ | BraTS23_3 |
Segmentation algorithm, adapting and generalizing to different brain tumors with segmentation labels of different tumor sub-regions.
Usage example (code) and top 3 participants
from brats import GoATSegmenter
from brats.constants import GoATAlgorithms
segmenter = GoATSegmenter(algorithm=GoATAlgorithms.BraTS24_1, cuda_devices="0")
# these parameters are optional, by default the winning algorithm will be used on cuda:0
segmenter.infer_single(
t1c="path/to/t1c.nii.gz",
t1n="path/to/t1n.nii.gz",
t2f="path/to/t2f.nii.gz",
t2w="path/to/t2w.nii.gz",
output_file="segmentation.nii.gz",
)
Class: brats.PediatricSegmenter
(Docs)
Challenge Paper 2024: N/A
Year | Rank | Author | Paper | CPU Support | Key Enum |
---|---|---|---|---|---|
2024 | 1st | Frank Miao, Shengjie Niu | N/A | ❌ | BraTS24_1 |
Algorithm to realistically synthesize and fill 3D healthy brain tissue in a region affected by glioma in brain MRI exams.
Usage example (code) and top 3 participants
from brats import Inpainter
from brats.constants import InpaintingAlgorithms
inpainter = Inpainter(algorithm=InpaintingAlgorithms.BraTS24_1, cuda_devices="0")
inpainter.infer_single(
t1n="path/to/voided_t1n.nii.gz",
mask="path/to/mask.nii.gz",
output_file="inpainting.nii.gz",
)
Class: brats.Inpainter
(Docs)
Challenge Paper 2023 and 2024 Link
Year | Rank | Author | Paper | CPU Support | Key Enum |
---|---|---|---|---|---|
2024 | 1st | Juexin Zhang et al. | Link | ✅ | BraTS24_1 |
2024 | 2nd | André Ferreira, et al. | Link | ❌ | BraTS24_2 |
2024 | 3rd | Alicia Durrer, et al. | N/A | ❌ | BraTS24_3 |
2023 | 1st | Juexin Zhang, et al. | Link | ✅ | BraTS23_1 |
2023 | 2nd | Alicia Durrer, et al. | Link | ❌ | BraTS23_2 |
2023 | 3rd | Jiayu Huo, et al. | Link | ✅ | BraTS23_3 |
Algorithm to realistically synthesize missing MRI modalities from available sequences to enhance brain tumor segmentation.
Usage example (code) and top 3 participants
from brats import MissingMRI
from brats.constants import MissingMRIAlgorithms
missing_mri = MissingMRI(algorithm=MissingMRIAlgorithms.BraTS24_1, cuda_devices="0")
# Example to synthesize t2f modality (whichever modality is missing will be inferred)
missing_mri.infer_single(
t1c="path/to/t1c.nii.gz",
t1n="path/to/t1n.nii.gz",
# t2f="path/to/t2f.nii.gz",
t2w="path/to/t2w.nii.gz",
output_file="inferred_t2f.nii.gz",
)
Class: brats.MissingMRI
(Docs)
Challenge Paper 2024: N/A
Year | Rank | Author | Paper | CPU Support | Key Enum |
---|---|---|---|---|---|
2024 | 1st | Jihoon Cho et al. | Link | ❌ | BraTS24_1 |
2024 | 2nd | Haowen Pang | N/A | ❌ | BraTS24_2 |
2024 | 3rd | Minjoo Lim et al. | Link | ❌ | BraTS24_3 |
2023 | 1st | Ivo Baltruschat | Link | ❌ | BraTS23_1 |
Important
If you use BraTS orchestrator in your research, please cite it to support the development!
Kofler, F., Rosier, M., Astaraki, M., Baid, U., Möller, H., Buchner, J. A., Steinbauer, F., Oswald, E., Rosa, E. de la, Ezhov, I., See, C. von, Kirschke, J., Schmick, A., Pati, S., Linardos, A., Pitarch, C., Adap, S., Rudie, J., Verdier, M. C. de, … Menze, B. (2025). BraTS orchestrator: Democratizing and Disseminating state-of-the-art brain tumor image analysis arXiv preprint arXiv:2506.13807
@misc{kofler2025bratsorchestratordemocratizing,
title={BraTS orchestrator : Democratizing and Disseminating state-of-the-art brain tumor image analysis},
author={Florian Kofler and Marcel Rosier and Mehdi Astaraki and Ujjwal Baid and Hendrik Möller and Josef A. Buchner and Felix Steinbauer and Eva Oswald and Ezequiel de la Rosa and Ivan Ezhov and Constantin von See and Jan Kirschke and Anton Schmick and Sarthak Pati and Akis Linardos and Carla Pitarch and Sanyukta Adap and Jeffrey Rudie and Maria Correia de Verdier and Rachit Saluja and Evan Calabrese and Dominic LaBella and Mariam Aboian and Ahmed W. Moawad and Nazanin Maleki and Udunna Anazodo and Maruf Adewole and Marius George Linguraru and Anahita Fathi Kazerooni and Zhifan Jiang and Gian Marco Conte and Hongwei Li and Juan Eugenio Iglesias and Spyridon Bakas and Benedikt Wiestler and Marie Piraud and Bjoern Menze},
year={2025},
eprint={2506.13807},
archivePrefix={arXiv},
primaryClass={eess.IV},
url={https://arxiv.org/abs/2506.13807},
}
We welcome all kinds of contributions from the community!
Please open a new issue here.
Nice to have you on board! Please have a look at our CONTRIBUTING.md file.