Skip to content

Bolin-Z/pypso

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pypso

Particle Swarm Optimization and its variants implemented in python

PSO

  1. Original PSO
  2. Canonical PSO
  3. Bare bones PSO
  4. Adaptive inertia weight PSO
  5. Canonical PSO with von Neumann topology
  6. PSO with aging leader and challenger
  7. Dynamic multi-swarm PSO
  8. Orthogonal learning PSO
  9. Extraordinariness PSO
  10. Adaptive Search Diversification in PSO
  11. Self-adaptive PSO with multiple velocity strategies
  12. Relaxation velocity update PSO
  13. Diversity enhancing mechanism and neighborhood search strategies PSO
  14. Adaptive PSO
  15. Fitness-distance-ratio based PSO
  16. Comprehensive learning PSO

Test functions

Unimodal functions

  1. Sphere $$ f(x) = \sum_{i = 1}^{D} x_i ^2 $$
  2. Schaffer's f6 (2D) $$ f(x,y) = 0.5 + \frac{\sin^2{(\sqrt{x^2 + y^2 })- 0.5}}{[1+0.001\cdot (x^2 + y^2)]^2 } $$

Multimodal functions

  1. Ackley $$ f(\vec{x}) = -a e^{-b\sqrt{\frac{1}{d}\sum_{i=1}^{d}x_i ^2 }} - e ^ {\frac{1}{d}\sum_{i=1}^d \cos(cx_i )} + a + e^1 $$ Recommended variable values: $a = 20, b = 0.2, c = 2\pi$ $f(\vec{x}) = 0$ at $\vec{x} = (0,\dots , 0)$

About

Particle Swarm Optimization and its variants implemented in python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages