Advanced LLM optimization techniques using CUDA. Features efficient attention mechanisms, custom CUDA kernels for transformers, and memory-efficient training strategies.
Features β’ Installation β’ Quick Start β’ Documentation β’ Contributing
- Features
- Project Structure
- Prerequisites
- Installation
- Quick Start
- Documentation
- Contributing
- Versioning
- Authors
- Citation
- License
- Acknowledgments
- Flash Attention implementation
- Efficient KV-cache management
- Custom CUDA kernels for attention
- Memory-efficient transformer layers
- Multi-GPU training optimization
graph TD
A[llm-gpu-optimization] --> B[kernels]
A --> C[models]
A --> D[training]
A --> E[benchmarks]
B --> F[attention]
B --> G[memory]
C --> H[transformer]
C --> I[tokenizer]
D --> J[distributed]
D --> K[optimization]
E --> L[profiling]
E --> M[metrics]
Click to expand full directory structure
llm-gpu-optimization/
βββ kernels/ # CUDA kernel implementations
β βββ attention/ # Optimized attention mechanisms
β βββ memory/ # Memory management utilities
βββ models/ # Model implementations
β βββ transformer/ # Transformer architecture
β βββ tokenizer/ # Tokenization optimizations
βββ training/ # Training utilities
β βββ distributed/ # Multi-GPU training
β βββ optimization/# Training optimizations
βββ benchmarks/ # Performance benchmarks
βββ README.md # Documentation
- CUDA Toolkit 11.8+
- NVIDIA GPU (Compute Capability 8.0+)
- PyTorch 2.2+
- 32GB+ GPU RAM recommended
- NVLink (for multi-GPU setup)
# Clone repository
git clone https://github.com/BjornMelin/llm-gpu-optimization.git
cd llm-gpu-optimization
# Create environment
python -m venv venv
source venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Build CUDA extensions
python setup.py install
from llm_gpu import models, optimizers
# Initialize model with optimizations
model = models.OptimizedTransformer(
attention_type='flash',
use_kv_cache=True
)
# Configure distributed training
trainer = optimizers.DistributedTrainer(
model,
memory_efficient=True,
gradient_checkpointing=True
)
# Train with optimizations
trainer.train(dataset, batch_size=32)
Technique | Description | Memory Savings | Speed Improvement |
---|---|---|---|
Flash Attention | Efficient attention computation | 80% | 3x |
KV Cache | Optimized key-value storage | 60% | 2x |
Gradient Checkpointing | Memory-efficient training | 70% | 0.8x |
- Dynamic memory allocation
- Gradient accumulation
- Activation checkpointing
- Memory-efficient attention patterns
Performance on different model sizes:
Model Size | Batch Size | GPU | Memory Usage | Training Time |
---|---|---|---|---|
7B | 32 | A100-80GB | 76GB | 0.8s/step |
13B | 16 | A100-80GB | 71GB | 1.2s/step |
70B | 8 | 8xA100 | 64GB/GPU | 2.5s/step |
We use SemVer for versioning. For available versions, see the tags on this repository.
Bjorn Melin
- GitHub: @BjornMelin
- LinkedIn: Bjorn Melin
@misc{melin2024llmgpuopt,
author = {Melin, Bjorn},
title = {LLM GPU Optimization: Advanced CUDA Optimization for Language Models},
year = {2024},
publisher = {GitHub},
url = {https://github.com/BjornMelin/llm-gpu-optimization}
}
This project is licensed under the MIT License - see the LICENSE file for details.
- Flash Attention paper authors
- HuggingFace Transformers team
- NVIDIA for CUDA toolkit and documentation
Made with π and β€οΈ by Bjorn Melin