#######################
1-Random Forests
2-GBM
3-XGBoost
4-LightGBM
5-CatBoost
6-FeatureImportance
7-Hyperparameter Optimization with RandomSearchCV (BONUS)
8-Analyzing Model Complexity with Learning Curves (BONUS)
9-Visualizing the Decision Tree
################################################
1-Exploratory Data Analysis
2-Data Preprocessing & Feature Engineering
3-Modeling using CART
4-Hyperparameter Optimization with GridSearchCV
5-Final Model
6-Feature Importance
7-Analyzing Model Complexity with Learning Curves (BONUS)
8-Visualizing the Decision Tree
9-Extracting Decision Rules
10-Extracting Python/SQL/Excel Codes of Decision Rules
11-Prediction using Python Codes
12-Saving and Loading Model
################################################
1-Exploratory Data Analysis
2-Data Preprocessing & Feature Engineering
3-Base Models
4-Automated Hyperparameter Optimization
5-Stacking & Ensemble Learning
6-Prediction for a New Observation
7-Pipeline Main Function
################################################
1-Helper Functions
2-Pipeline Main Function
################################################
################################################
1-Exploratory Data Analysis
2-Data Preprocessing & Feature Engineering
3-Modeling & Prediction
4-Model Evaluation
5-Hyperparameter Optimization
6-Final Model
##############################################
1-Simple Linear Regression with OLS Using Scikit-Learn
2-Guess
3-Prediction Success
4-Multiple Linear Regression
5-Model
6-Guess
7-Evaluating Prediction Success
8-Simple Linear Regression with Gradient Descent from Scratch