Skip to content

The code used for generating synthetic data based on empirical data from 30 patients with drug-resistant epilepsy

Notifications You must be signed in to change notification settings

BalanceKey/virtual_epilepsy_patient_cohort

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation

Virtual epilepsy patient cohort

The code used for generating and evaluating synthetic data based on empirical data from 30 patients with drug-resistant epilepsy

The dataset can be found here:

Dollomaja, B., Wang, H., & Jirsa, V. (2024). Virtual Epileptic Patient Cohort (v1.0) [Data set]. EBRAINS. https://doi.org/10.25493/XWG2-S8X

The paper describing the dataset:

Dollomaja, B., Wang, H. E., Guye, M., Makhalova, J., Bartolomei, F., & Jirsa, V. K. (2025). Virtual epilepsy patient cohort: generation and evaluation. PLOS Computational Biology, 21(4), e1012911. https://doi.org/10.1371/journal.pcbi.1012911

Generating synthetic data

The code to generate synthetic spontaneous seizures: virtual_epileptic_seeg_ret_patient.py
The code to generate synthetic stimulated seizures: STIM_virtual_epileptic_seeg_ret.py
The code to generate synthetic interictal data: IIS_virtual_epileptic_seeg_ret.py\

Evaluating synthetic data

The code used to compare each modality of synthetic activity to its empirical counterpart:
auto_compare_synthetic_empirical.py (for spontaneous seizures)
auto_compare_synthetic_empirical_Stim.py (for stimulated seizures)
IIS_compute_spike_frequency.py and IIS_compare_synthetic_empirical.py (for interictal data)

Stimulation amplitude and location evaluation

Generating simulated data with varying stimulation amplitude: STIM_virtual_epileptic_seeg_ret_ControlAmplitude.py
Generating simulated data with varying stimulation location: STIM_virtual_epileptic_seeg_ret_ControlLocation.py

Comparing empirical and simulated data in such cases: auto_compare_synthetic_empirical_Stim_ControlAmp.py and auto_compare_synthetic_empirical_Stim_ControlLocation.py

Generating surrogate data

Surrogate data are generated using random EZ hypothesis:
virtual_epileptic_seeg_ret_Control.py,
STIM_virtual_epileptic_seeg_ret_Control.py,
IIS_virtual_epileptic_seeg_ret_Control.py

Significance testing

The employed permutation test for statistical significance testing between virtual cohort and surrogate virtual data: permutation_test_comparison.py

Other

Other files are used for managing the structure of the dataset in data_manager.py or for plotting figures from the data in utils_figures folder.

About

The code used for generating synthetic data based on empirical data from 30 patients with drug-resistant epilepsy

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages