Skip to content

BE2R-Lab-RND-AI-Grasping/gt_functional_pc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Functional Classification of Point Clouds

Overview

This repository contains code to generate functional classification of observed point clouds in IsaacLab. This means classifying each point in the point cloud into either functional or non-functional areas.

Intallation

git clone https://github.com/BE2R-Lab-RND-AI-Grasping/gt_functional_pc.git
cd gt_functional_pc
  • Install extra python dependencies: python -m pip install -r requirements.txt

  • Download and extract dataset from here

Usage

  • Run the script as follows, using any object/model from the dataset instead of fixed_joint_pliers/model_0
python demo.py  --mesh_path dataset/fixed_joint_pliers/model_0/object_convex_decomposition.obj --gt_pc_path dataset/fixed_joint_pliers/model_0/point_cloud_labeled.ply --device cuda --scale 0.001 --enable_cameras --visualize_pc

Examples

Functional areas are labeled in red, and non-functional areas in blue.

drill.mp4
pliers.mp4

About

Get ground truth functional classification of point cloud in IsaacLab

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages