Skip to content

adding response format samples #41944

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: feature/azure-ai-agents/1.1.0b4
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
This sample demonstrates how to create an agent with json response format.

USAGE:
python sample_agents_json_object_response_format.py

Before running the sample:

pip install azure-ai-projects azure-ai-agents azure-identity

Set these environment variables with your own values:
1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
page of your Azure AI Foundry portal.
2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Azure AI Foundry project.
"""

import os, time
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import ListSortOrder, AgentsResponseFormat

project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)

with project_client:
agents_client = project_client.agents

# [START create_agent_with_json_object_response_format]
agent = agents_client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-agent",
instructions="You are helpful agent. You will respond with a JSON object.",
response_format=AgentsResponseFormat(type="json_object")
)
# [END create_agent_with_json_object_response_format]
print(f"Created agent, agent ID: {agent.id}")

thread = agents_client.threads.create()
print(f"Created thread, thread ID: {thread.id}")

# List all threads for the agent
threads = agents_client.threads.list()

message = agents_client.messages.create(thread_id=thread.id, role="user", content="Hello, give me a list of planets in our solar system.")
print(f"Created message, message ID: {message.id}")

run = agents_client.runs.create(thread_id=thread.id, agent_id=agent.id)

# Poll the run as long as run status is queued or in progress
while run.status in ["queued", "in_progress", "requires_action"]:
# Wait for a second
time.sleep(1)
run = agents_client.runs.get(thread_id=thread.id, run_id=run.id)
print(f"Run status: {run.status}")

if run.status == "failed":
print(f"Run error: {run.last_error}")

agents_client.delete_agent(agent.id)
print("Deleted agent")

messages = agents_client.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for msg in messages:
if msg.text_messages:
last_text = msg.text_messages[-1]
print(f"{msg.role}: {last_text.text.value}")
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
This sample demonstrates how to use agents with JSON schema output format.

USAGE:
python sample_agents_json_schema_response_format.py

Before running the sample:

pip install azure-ai-projects azure-ai-agents azure-identity pydantic

Set these environment variables with your own values:
1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
page of your Azure AI Foundry portal.
2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Azure AI Foundry project.
"""

import os

from enum import Enum
from pydantic import BaseModel, TypeAdapter
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import (
ListSortOrder,
MessageTextContent,
MessageRole,
ResponseFormatJsonSchema,
ResponseFormatJsonSchemaType,
RunStatus,
)


# Create the pydantic model to represent the planet names and there masses.
# [START create_pydantic_model_for_planets]
class Planets(str, Enum):
Earth = "Earth"
Mars = "Mars"
Mercury = "Mercury"
# [END create_pydantic_model_for_planets]

class Planet(BaseModel):
planet: Planets
mass: float


project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)

with project_client:
agents_client = project_client.agents

# [START create_agent_with_json_schema_response_format]
agent = agents_client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-agent",
instructions="Extract the information about planets.",
response_format=ResponseFormatJsonSchemaType(
json_schema=ResponseFormatJsonSchema(
name="planet_mass",
description="Extract planet mass.",
schema=Planet.model_json_schema(),
)
),
)
# [END create_agent_with_json_schema_response_format]
print(f"Created agent, agent ID: {agent.id}")

thread = agents_client.threads.create()
print(f"Created thread, thread ID: {thread.id}")

message = agents_client.messages.create(
thread_id=thread.id,
role="user",
content=("The mass of the Mars is 6.4171E23 kg; the mass of the Earth is 5.972168E24 kg;"),
)
print(f"Created message, message ID: {message.id}")

run = agents_client.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)

if run.status != RunStatus.COMPLETED:
print(f"The run did not succeed: {run.status=}.")

agents_client.delete_agent(agent.id)
print("Deleted agent")

messages = agents_client.messages.list(
thread_id=thread.id,
order=ListSortOrder.ASCENDING,
)

for msg in messages:
if msg.role == MessageRole.AGENT:
last_part = msg.content[-1]
if isinstance(last_part, MessageTextContent):
planet = TypeAdapter(Planet).validate_json(last_part.text.value)
print(f"The mass of {planet.planet} is {planet.mass} kg.")
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
This sample demonstrates how to create an agent with text response format.

USAGE:
python sample_agents_text_response_format.py

Before running the sample:

pip install azure-ai-projects azure-ai-agents azure-identity

Set these environment variables with your own values:
1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview
page of your Azure AI Foundry portal.
2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in
the "Models + endpoints" tab in your Azure AI Foundry project.
"""

import os, time
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import ListSortOrder, AgentsResponseFormat

project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)

with project_client:
agents_client = project_client.agents

# [START create_agent_with_text_response_format]
agent = agents_client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-agent",
instructions="You are helpful agent.",
response_format=AgentsResponseFormat(type="text")
)
# [END create_agent_with_text_response_format]
print(f"Created agent, agent ID: {agent.id}")

thread = agents_client.threads.create()
print(f"Created thread, thread ID: {thread.id}")

# List all threads for the agent
threads = agents_client.threads.list()

message = agents_client.messages.create(thread_id=thread.id, role="user", content="Hello, give me a list of planets in our solar system.")
print(f"Created message, message ID: {message.id}")

run = agents_client.runs.create(thread_id=thread.id, agent_id=agent.id)

# Poll the run as long as run status is queued or in progress
while run.status in ["queued", "in_progress", "requires_action"]:
# Wait for a second
time.sleep(1)
run = agents_client.runs.get(thread_id=thread.id, run_id=run.id)
print(f"Run status: {run.status}")

if run.status == "failed":
print(f"Run error: {run.last_error}")

agents_client.delete_agent(agent.id)
print("Deleted agent")

messages = agents_client.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for msg in messages:
if msg.text_messages:
last_text = msg.text_messages[-1]
print(f"{msg.role}: {last_text.text.value}")
Loading