SnapMed is a lightweight web application that helps users identify medicines by scanning or uploading a photo of a medicine strip. The app extracts the brand name using OCR and provides key information such as usage, dosage, and side effects in a simple, user-friendly format.
Note
- Strip detection via image upload
- OCR-based medicine name extraction
- Drug information lookup from a trusted medical API
- Text-To-Speech (TTS) for accessibility
- Support for multiple languages (English, Hindi, Bengali)
- Clean, responsive UI
- User uploads or captures an image of a medicine strip.
- OCR extracts the printed brand name from the strip.
- The app matches the brand name with a drug information dataset.
- A drug info card is displayed showing:
- Brand name and generic name
- Usage
- Composition
- Info is read aloud using TTS and shown as text.
https://snap-med.vercel.app/snap
Snap-Med/
├── Backend/
│ ├── public/
│ ├── src/
│ ├── test/
│ ├── .gitignore
│ ├── package.json
│ ├── package-lock.json
│ ├── tsconfig.json
│ ├── todo.txt
│ └── vercel.json
│
├── Frontend/
│ ├── public/
│ ├── src/
│ ├── .gitignore
│ ├── eslint.config.js
│ ├── index.html
│ ├── package.json
│ ├── package-lock.json
│ ├── postcss.config.js
│ ├── tailwind.config.js
│ ├── todo.txt
│ ├── vercel.json
│ └── vite.config.js
│
├── ML/
│ ├── .env.exammple
│ ├── .gitignore
│ ├── package.json
│ ├── package-lock.json
│ ├── server.js
│ └── todo.txt
│
├── LICENSE
└── README.md
- Elderly or rural users who cannot read complex medical text
- Community health workers who need quick medicine info
- Cases of medicine misuse due to confusion or lack of literacy
Important
- Innovation: Practical AI usage in health context
- Technical Implementation: OCR + drug data + TTS
- Impact: Solves a real and local problem
- UI/UX: Simple, accessible, mobile-friendly interface
- Bonus: Uses OCR, designed for underrepresented users
Team Syndicate – Hack4Bengal 4.0
Built Snap-Med to make medicine information accessible to everyone.
Member | Role | Branch |
---|---|---|
Debjeet Banerjee | ML | ML |
Imon Chakraborty | Backend | Backend |
Nilanjan Mondal | Frontend | Frontend |