Advanced FPGA implementations of cutting-edge deep learning models, optimized for high performance and energy efficiency.
graph TD
A[Host CPU] -->|Configuration| B[FPGA]
B -->|Results| A
B --> C[Memory Controller]
C --> D[DDR Memory]
B --> E[Neural Engine]
E --> F[Systolic Array]
E --> G[Activation Unit]
L1 Cache (On-Chip) : 64KB
L2 Cache (On-Chip) : 256KB
External DDR : 4GB
# Required Software
- Xilinx Vivado 2023.1
- Python 3.8+
- TensorFlow 2.x
We welcome contributions! See our Contributing Guidelines.
- Fork repository
- Create feature branch
- Implement changes
- Submit pull request
- Code review
- Merge
Apache License 2.0 - LICENSE