Skip to content

🎤 Transkrypcja + 📝 Podsumowanie filmu na YouTube z użyciem 🐍 Pythona i 🤖 Lokalnych Modeli AI (ollama + Wshiper). Jak coś to kod był pisany za pomocą AI (cursor) XD, nie mam pojęcia jak działa ale działa.

License

Notifications You must be signed in to change notification settings

AvelDev/yappergui

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YapperGUI

YapperGUI Preview

YapperGUI is a powerful desktop application that transcribes YouTube videos and generates summaries using AI. It combines the power of OpenAI's Whisper model for transcription and Ollama's local LLM for summarization.

Features

  • 🎥 YouTube video transcription
  • 🤖 AI-powered summarization
  • 🌍 Automatic language detection
  • ⚡ GPU acceleration support
  • 🎯 Timestamp support
  • ⚙️ Configurable model settings
  • 📝 Save transcriptions and summaries

Requirements

  • Python 3.8+
  • FFmpeg
  • CUDA-compatible GPU (optional, for faster processing)
  • Ollama with mistral model installed

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/yappergui.git
cd yappergui
  1. Install dependencies:
pip install -r requirements.txt
  1. Install Ollama and the mistral model:
# Install Ollama (macOS)
curl https://ollama.ai/install.sh | sh

# Pull the mistral model
ollama pull mistral
  1. Run the application:
python main.py

Usage

  1. Launch the application
  2. Paste a YouTube URL into the input field
  3. Click "Podsumuj" to start processing
  4. Wait for the transcription and summary to complete
  5. Use the "Save to File" button to save the results

Configuration

You can configure various settings through the Settings menu:

  • Whisper Model Size: tiny, base, small, medium, large, large-v2
  • Processing Device: CPU or CUDA
  • FFmpeg Path
  • Timestamp Display

Project Structure

  • main.py - Application entry point
  • gui.py - Main GUI implementation
  • audio_processor.py - YouTube audio download and processing
  • transcription.py - Whisper model transcription
  • settings.py - Settings window and configuration
  • config.py - Configuration management
  • logger.py - Logging system
  • utils.py - Utility functions

Error Handling

The application includes comprehensive error handling for common issues:

  • Network connectivity problems
  • FFmpeg missing or misconfigured
  • GPU/CUDA issues
  • File system permissions
  • Invalid YouTube URLs

Logging

Logs are stored in the logs directory with the following format:

  • Daily log files: yapper_YYYYMMDD.log
  • Both console and file logging
  • Different log levels (DEBUG, INFO, ERROR)

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

🎤 Transkrypcja + 📝 Podsumowanie filmu na YouTube z użyciem 🐍 Pythona i 🤖 Lokalnych Modeli AI (ollama + Wshiper). Jak coś to kod był pisany za pomocą AI (cursor) XD, nie mam pojęcia jak działa ale działa.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Languages