This repository contains implementations of fundamental machine learning algorithms from scratch using Python and NumPy. It's designed for learning purposes and interview preparation.
- ☑️ K-Means Clustering
- ☑️ Linear Regression
- ☑️ Logistic Regression
- ☑️ Decision Trees
- SVD
- PCA
- Support Vector Machine
- Neural Networks
Model | MSE | R² Score |
---|---|---|
Custom Linear Regression | 0.1725 | 0.8234 |
Sklearn SGDRegressor | 0.1725 | 0.8233 |
Model | MSE | R² Score |
---|---|---|
Custom Linear Regression | 0.5535 | 0.5652 |
Sklearn SGDRegressor | 0.2349 | 0.8155 |
Model | MSE | R² Score |
---|---|---|
Custom Logistic Regression | 3.13 × 10⁻³⁰ | 1.0 |
Sklearn Logistic Regression | 0.0 | 1.0 |