- Interactive Data Upload: Users can effortlessly upload their own datasets.
- Automated Data Preprocessing: Clean and preprocess data for training or inference.
- Multiple Regression Models: Train and compare various models like Linear Regression, Decision Tree, Random Forest, SVR, and K-Neighbors Regressor.
- Instant Predictions: Generate predictions based on real-time user input.
- Model Evaluation: Easily visualize model performance metrics (MAE, MSE, R²).
src/
└── salespredictor/
├── api/
├── components/
│ ├── data_ingestion.py
│ ├── data_processing.py
│ ├── model_training.py
│ └── model_inference.py
├── dashboard/
├── pipeline/
├── utils/
└── __init__.py
requirements.txt
setup.py
README.md
git clone git@github.com:Anand-puthiyapurayil/AI_Sales_Project.git
cd AI_Sales_Project
Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # Linux/Mac
venv\Scripts\activate # Windows
Install dependencies:
pip install -r requirements.txt
streamlit run src/salespredictor/dashboard/app.py
uvicorn src.salespredictor.api.main:app --reload
- Ingest Data: Upload your CSV file via Streamlit and preprocess.
- Train Models: Select to train multiple models with your data.
- Make Predictions: Input real-time data to get instant predictions.
- Evaluate: View detailed metrics and performance visuals of your trained models.
- Frontend: Streamlit
- Backend: FastAPI, Uvicorn
- Machine Learning Libraries: Scikit-learn, Pandas, NumPy, Joblib
- Visualization: Matplotlib, Seaborn
Distributed under the MIT License.
Contributions are welcome! To contribute:
- Fork the repository.
- Create a new feature branch (
git checkout -b feature/my-feature
). - Commit your changes (
git commit -m 'Add feature'
). - Push your branch (
git push origin feature/my-feature
). - Open a Pull Request.
- Email: anand.nelliot@gmail.com
- LinkedIn: Anand Puthiyapurayil
Happy Predicting! 🚀✨