Skip to content

add mixtral #256

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jul 10, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions natural_language_processing/text_generation/mixtral/run.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
# SPDX-License-Identifier: Apache-2.0
# Copyright (c) 2024, Ampere Computing LLC
try:
from utils import misc # noqa
except ModuleNotFoundError:
import os
import sys
filename = "set_env_variables.sh"
directory = os.path.realpath(__file__).split("/")[:-1]
for idx in range(1, len(directory) - 1):
subdir = "/".join(directory[:-idx])
if filename in os.listdir(subdir):
print(f"\nPlease run \033[91m'source {os.path.join(subdir, filename)}'\033[0m first.")
break
else:
print(f"\n\033[91mFAIL: Couldn't find {filename}, are you running this script as part of Ampere Model Library?"
f"\033[0m")
sys.exit(1)


def run_pytorch(num_runs, timeout, dataset_path, disable_jit_freeze=False, **kwargs):
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from utils.nlp.alpaca_instruct import AlpacaInstruct
from utils.pytorch import PyTorchRunnerV2, apply_compile
from utils.benchmark import run_model

def run_single_pass(pytorch_runner, dataset):
input_array = [{"role": "user", "content": dataset.get_input_string()}]
inputs = encode(input_array)

outputs = pytorch_runner.run(inputs=inputs, generation_config=config)
pytorch_runner.set_task_size(outputs.shape[1] - inputs.shape[1])
response = decode(outputs[:, inputs.shape[1]:])[0]
dataset.submit_prediction(response)

model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
model.eval()
model.forward = apply_compile(model.forward)

tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
dataset = AlpacaInstruct(1, dataset_path=dataset_path)
encode = lambda i: tokenizer.apply_chat_template(i, return_tensors="pt")
decode = lambda t: tokenizer.batch_decode(t, skip_special_tokens=True)
config = GenerationConfig.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
config.max_new_tokens = 100
config.do_sample = True
config.pad_token_id = config.eos_token_id

runner = PyTorchRunnerV2(model.generate)

return run_model(run_single_pass, runner, dataset, 1, num_runs, timeout)


def run_pytorch_fp32(num_runs, timeout, dataset_path, disable_jit_freeze=False, **kwargs):
return run_pytorch(num_runs, timeout, dataset_path, disable_jit_freeze, **kwargs)


def main():
from utils.helpers import DefaultArgParser
parser = DefaultArgParser(["pytorch"])
parser.add_argument("--dataset_path",
type=str,
help="path to JSON file with instructions")
run_pytorch_fp32(**vars(parser.parse()))


if __name__ == "__main__":
main()