This project fine-tunes a pre-trained deep learning model using LoRA (Low-Rank Adaptation) to convert real images into anime-style images. The model is trained with optimized hyperparameters to enhance the quality of anime-style transformations.
project-root/
│── anime-env/ # Virtual environment for dependencies
│── data/
│ ├── augmented_data/ # Augmented images
│ ├── original_data/ # Original dataset
│ ├── test_dataset/ # Test images
│ ├── dataset.md # Dataset links stored on google drive
│── experiments/
│ ├── model_checkpoints/ # Trained model checkpoints
│ ├── anime-style_training_log.csv # Training logs
│ ├── experiments.md # Links of checkpoints and training logs
│── fine-tuned-unet-lora/ # Fine-tuned model weights
│── notebooks/ # Jupyter notebooks for eda
│── Outputs/ # Generated anime-style images
│── scripts/
│ ├── Model_run.py # Main script to run the model
│── src/ # Source code
│── test/ # Testing script
│── config.json # Configuration file
│── Dockerfile # Docker setup for reproducibility
│── requirements.txt # Dependencies
git clone https://github.com/your-org/your-repo.git
cd your-repo
python -m venv anime-env
source anime-env/bin/activate # macOS/Linux
anime-env\Scripts\activate # Windows
pip install -r requirements.txt
Run the training script with LoRA fine-tuning:
python scripts/Model_run.py --config config.json
Use the trained model for inference:
python scripts/Model_run.py --input path/to/image.jpg --output path/to/save.jpg
- Model Used: Fine-tuned UNet-based model with LoRA.
- Dataset: Augmented dataset of anime-style and real images.
- Training Framework: TensorFlow / PyTorch (specify accordingly).
- Performance Metrics: SSIM, PSNR, FID scores for image quality evaluation.
- Fork the repository.
- Create a feature branch (
git checkout -b feature-name
). - Commit changes (
git commit -m "Added feature"
). - Push to the branch (
git push origin feature-name
). - Submit a Pull Request.
- Optimize training for better anime-style generation.
- Implement real-time inference with optimized performance.
- Deploy as a web application.
Author: Amisha Singh