Towards real-time assessment of infrasound event detection capability using deep learning-based transmission loss estimation
Associated publication: Cameijo, A., Le Pichon, A., Sklab, Y., Souhila, A., Brissaud, Q., Näsholm, S. P., ... & Aknine, S. (2025), Authorea Preprints.
DeepLearning_Infrasound provides a deep learning model that predicts ground-level infrasound transmission loss (TL) over distances up to 4,000 km based on realistic range-dependen atmospheric conditions (combining horizontal wind speed, temperature and small-scale disturbance fields).
It enables:
- Near real-time assessment of infrasound detection capabilities at a global scale.
- Faster studies of regional events such as volcanic eruptions or atmospheric explosions.
This repository contains the pre-trained model, data preprocessing scripts, and example codes to easily run predictions, even without deep AI expertise.
DeepLearning_Infrasound/
├── cnn_gru/
│ ├── main.py # Script to test the pre-trained model
│ ├── quick_test.ipynb # Jupyter Notebook for a simple demonstration
│ ├── requirements.txt # List of required Python packages
│ ├── to_load/ # Folder containing pre-trained model weights
├── Data/
│ ├── Preprocessing/
│ │ ├── inputs.py # Script to prepare atmospheric input data
│ │ ├── outputs.py # Script to prepare simulation target data
├── CITATION.cff # Citation file
├── README.md # This documentation
- Python 3.10.6
- TensorFlow 2.8.3
- Keras 2.8.0
- CUDA 11.7 and cuDNN 8.6.0 (optional for GPU acceleration)
Install the required packages:
pip install -r cnn_gru/requirements.txt
Tip: It is recommended to use a virtual environment (python -m venv env
) to avoid conflicts.
git clone https://github.com/your-repo/DeepLearning_Infrasound.git
cd DeepLearning_Infrasound/cnn_gru
python main.py
This will generate a prediction using the provided demo atmospheric input.
jupyter notebook quick_test.ipynb
The notebook will guide you through loading the model, preparing the inputs, and visualizing a ground-level transmission loss map.
If you want to use your own atmospheric profiles:
- Prepare atmospheric input files
python Data/Preprocessing/inputs.py --input your_data_file.nc
- Prepare simulated output targets
python Data/Preprocessing/outputs.py
Make sure your input data follows the expected format described in the preprocessing scripts.
For scientific background, methodology, and validation:
Towards real-time assessment of infrasound event detection capability using deep learning-based transmission loss estimation
Cameijo, A., Le Pichon, A., Sklab, Y., Souhila, A., Brissaud, Q., Näsholm, S. P., ... & Aknine, S. (2025), Authorea Preprints.
and:
Predicting infrasound transmission loss using deep learning Brissaud, Q., Näsholm, S. P., Turquet, A., & Le Pichon, A. (2023), Geophysical Journal International, 232(1), 274-286.
- Atmospheric Data: WACCM6 Model – NCAR/UCAR
- Parabolic Equation Simulation: ePape Model – NCPA, University of Mississippi
If you use this repository or any results from it, please cite as follows:
@article{cameijo2025,
title={Towards real-time assessment of infrasound event detection capability using deep learning-based transmission loss estimation},
author={Cameijo, A., Le Pichon, A., Sklab, Y., Souhila, A., Brissaud, Q., Näsholm, S. P., ... & Aknine, S. (2025)},
journal={Authorea Preprints},
year={2025}
}
For any questions or feedback, feel free to reach out:
📧 alice.cameijo@cea.fr
Enjoy exploring infrasound propagation with AI!