Time series decomposition plot trend and seasonality
Plot trend and seasonality together in one chart as described at Business Days Time Series Weekly Trend and Seasonality.
Added SARIMAX keew predictions (see sarimax_test.py test_plot_keew())
Example usage from ./Python/tests/keew_decomp_test.py
# create test
# test_decomposition.py
import unittest
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from time_decomp.decomposition import DecompositionSingleton
class TestKeewDecomposition(unittest.TestCase):
def setUp(self):
self.decomp = DecompositionSingleton()
n = 2000
df = pd.DataFrame({'A': np.random.randint(0,100, size=(n,)), 'B': np.random.randint(0,100, size=(n,))})
lsDays = [pd.Timestamp(2021, 1, 1)]*n
for i in range(n):
# construct time, where iYear-iMonth-i
lsDays[i] = pd.Timestamp( np.random.randint(2021,2025), np.random.randint(1,13) , (i+1) % 28 + 1)
df['Day'] = lsDays
df['Year'] = df['Day'].dt.year
df['Month'] = df['Day'].dt.month
df['KeewMonth'] = df['Day'].apply(self.decomp.get_month_keew)
df['Keew']=(df['Month']-1)*4+df['KeewMonth']
self.decomp.df = df.groupby(['Year', 'Keew']).last().reset_index()
self.decomp.features = ['A', 'B']
self.decomp.decompose_params = {'model': 'additive', 'period':48, 'extrapolate_trend':'freq'}
def test_plot_decomposition(self):
# output df info
print("Starting test_plot_decomposition")
print("DataFrame Info:")
print(self.decomp.df.info())
print("DataFrame Head:")
print("\n%s", self.decomp.df.head())
self.decomp.m_decompose()
self.decomp.plot_decomposition('A', 'Year', range(2021,2025), 'Keew', 'A keew', chart_elements=[self.decomp.ChartElement.TREND, self.decomp.ChartElement.SEASONAL])
plt.show()
from plotly.offline import iplot
decomp.m_decompose()
fig = decomp.plot_decomposition_plotly('A', 'Year', range(2021,2025), 'Keew', 'A keew', chart_elements=[ decomp.ChartElement.OBSERVED, decomp.ChartElement.SEASONAL])
iplot(fig)
Added trends analysis from EnvironmentalTrends
from time_decomp.environmentaltrends import EnvironmentalTrends
# Set pandas option to display all columns
pd.set_option('display.max_columns', None)
class TestEnvironmentalTrends(unittest.TestCase):
def setUp(self):
self.decomp = EnvironmentalTrends()
self.decomp.features = ['A']
self.decomp.trend_data_params = {'year_col':'Year', 'month_col':'Month' }
self.decomp.trends_params = {'seasons_per_year': 12, 'trend_lengths': [1], 'end_years': [2025]}
def test_m_trends(self):
self.decomp.m_trends()
# output df info
print("Starting test_plot_decomposition")
print("DataFrame Info:")
print(self.decomp.t['A'].info())
print("DataFrame Head:")
print("\n%s", self.decomp.t['A'].head())
DataFrame Head:
%s Frequency SeasonsPeryear TrendLength TrendEnd TrendPeriod \
0 Monthly 12 1 2025 Jul 2024 to Jun 2025
ValueCount Minimum Median Average Maximum YearsInPeriod \
0 12.0 5.0 48.0 50.333333 96.0 1.0
SeasonsInPeriod PercentOfYears PercentOfSeasons KW-pValue Seasonality \
0 12.0 100.0 100.0 0.443263 Non-seasonal
AppliedSeasonality MK-S MK-Variance MK-pvalue IncreasingLikelihood \
0 Non-seasonal 8.0 212.666667 0.631222 68.438909
TrendDirection SenSlope LowerSlope UpperSlope
0 Likely increasing 16.5 -384.0 544.8