Comprehensive Collection of Retrieval-Augmented Generation Techniques
A complete hands-on guide to RAG implementations, from basic concepts to advanced techniques. This repository contains practical notebooks demonstrating various RAG approaches, retrieval strategies, and optimization methods.
Based on the provided flowchart, here's the complete RAG system architecture:
graph TD
A[π DATA] --> B[πͺ CHUNK 1]
A --> C[πͺ CHUNK 2]
A --> D[πͺ CHUNK 3]
B --> E[π§ EMBEDDING 1]
C --> F[π§ EMBEDDING 2]
D --> G[π§ EMBEDDING 3]
E --> H[πΎ DATABASE<br/>Vector Store]
F --> H
G --> H
I[π€ USER] --> J[π QUERY]
J --> K[π§ EMBEDDING<br/>Query]
I -.->|Generation| L[π SEMANTIC SEARCH]
K --> L
H --> L
L --> M[π― RETRIEVAL]
M --> N[π RANKED RESULTS]
N --> O[π RERANKED RESULTS]
O --> P[π€ LLM<br/>Query+Prompt+Context]
P --> Q[π¬ RESPONSE]
style A fill:#e1f5fe
style H fill:#f3e5f5
style I fill:#fff3e0
style P fill:#e8f5e8
style Q fill:#fce4ec
- π Data Processing: Documents are split into manageable chunks
- π§ Embedding: Text chunks converted to vector representations
- πΎ Vector Database: Stores embeddings for efficient retrieval
- π Semantic Search: Finds relevant chunks using similarity
- π― Retrieval: Returns top-k most relevant documents
- π Reranking: Optimizes order for better context
- π€ LLM Generation: Produces final answer with retrieved context
Retrieval-Augmented Generation combines the power of:
- π Information Retrieval: Finding relevant external knowledge
- π€ Language Generation: Creating contextual responses
- π External Knowledge: Up-to-date, domain-specific information
π° Basic RAG
Foundation techniques for RAG implementation
Notebook | Purpose | Key Techniques |
---|---|---|
basic_rag.ipynb |
Core RAG pipeline | Vector embeddings, semantic search, prompt engineering |
document_rag.ipynb |
PDF document processing | Local knowledge base, metadata handling |
url_rag.ipynb |
Web content RAG | Real-time retrieval, dynamic knowledge updates |
π Retriever Techniques
Advanced retrieval strategies beyond basic semantic search
Technique | Notebook | Innovation |
---|---|---|
Contextual Compression | Contextual_Compression_Retriever.ipynb |
Compresses retrieved docs to extract only relevant portions |
HyDE | Hypothetical_Document_Embedding_(HyDE).ipynb |
Generates hypothetical answers to improve retrieval accuracy |
Multi-Hop Retrieval | MultiHop_Query_Step_by_Step_Retrieval.ipynb |
Step-by-step retrieval for complex queries |
Parent Document | Parent_Document_Retriever.ipynb |
Retrieves small chunks but returns larger parent documents |
Self-Query | Self_Query_Retrieval.ipynb |
Natural language query parsing with metadata filtering |
Sentence Window | Sentence_Window_Retrieval.ipynb |
Expanded context windows around relevant sentences |
π ReRanking Techniques
Optimize retrieved document ordering for better LLM performance
Method | Notebook | Advantage |
---|---|---|
BM25 Rerank | bm25_rerank_rag.ipynb |
Statistical keyword-based relevance scoring |
Cohere Rerank | cohere_rerank.ipynb |
State-of-the-art neural reranking API |
Cross-Encoder | cross_encoder_rerank.ipynb |
Joint query-document encoding for precise relevance |
Flash ReRank | Flash_ReRanking.ipynb |
Ultra-fast reranking for real-time applications |
π Hybrid Search RAG
Combine multiple search methodologies for superior performance
Technique | Notebook | Combines |
---|---|---|
Cosine Similarity | cosine.ipynb |
Vector similarity mathematics and optimization |
Hybrid Search | hybridsearch-rag.ipynb |
Semantic + keyword search with score fusion algorithms |
β‘ RAG Fusion
Fuse multiple retrieval methods for comprehensive results
Method | Notebook | Fusion Strategy |
---|---|---|
Reciprocal Rank Fusion | ReciProcal_Rank_Fusion.ipynb |
Combines rankings from multiple retrievers using RRF algorithm |
Solve positional bias where important info gets overlooked in middle context
Solution | Notebook | Approach |
---|---|---|
Merger & Reranking | MergerRetriever_And_Reranking.ipynb |
Strategic document ordering and context reorganization |
πΌοΈ MultiModal RAG
Process and understand multiple data types including text, images, charts, and diagrams
Technique | Notebook | Innovation |
---|---|---|
MultiModal Processing | MultiModal_RAG(IMG+TexT).ipynb |
CLIP-based unified embeddings for text and images, cross-modal retrieval |
π€ Agentic RAG
Intelligent agent-based RAG systems with autonomous decision making
Method | Notebook | Capability |
---|---|---|
Agentic RAG | Agentic_RAG.ipynb |
Autonomous agent-based retrieval and generation |
LangGraph RAG | Rag_with_langgraph.ipynb |
Graph-based workflow orchestration for complex RAG |
Routed RAG | Routed_RAG_With_LLM_Router.ipynb |
LLM-powered routing for dynamic retrieval strategies |
π¬ Advanced RAG
Cutting-edge RAG techniques for specialized applications
Technique | Notebook | Advanced Feature |
---|---|---|
Agentic RAG | Agentic_RAG.ipynb |
Agent-based autonomous reasoning and retrieval |
Corrective RAG (CRAG) | Corrective_RAG_(CRAG).ipynb |
Self-correcting retrieval with confidence scoring |
π RAG Evaluation
Comprehensive evaluation frameworks for RAG system performance
Framework | Notebook | Evaluation Focus |
---|---|---|
RAG Evaluation | RAG_Evaluation.ipynb |
Custom evaluation metrics and benchmarking |
RAGAs Evaluation | RAGAs_Evaluation.ipynb |
Automated evaluation using RAGAs framework |
- π¦ LangChain: RAG framework and components
- π€ HuggingFace: Embeddings and transformers
- π ChromaDB: Vector database storage
- π FAISS: Efficient similarity search
- π OpenAI: Embeddings and language models
- β‘ Cohere: Professional reranking services
- πΌοΈ CLIP: Multimodal embeddings for text and images
- π LangGraph: Graph-based workflow orchestration
- βοΈ RAGAs: Automated RAG evaluation framework
- π§ Groq: High-performance LLM inference
- Clone the repository
- Install dependencies:
pip install -r requirements.txt
- Start with Basic RAG to understand fundamentals
- Explore Retriever Techniques for advanced retrieval strategies
- Implement ReRanking for better accuracy
- Try Hybrid Approaches for production systems
- Explore MultiModal RAG for documents with images and text
- Advance to Agentic RAG for autonomous intelligent systems
- Use RAG Evaluation to benchmark and optimize performance
- π Document Q&A: Academic papers, legal documents
- π Web Search: Real-time information retrieval
- π’ Enterprise: Knowledge management systems
- π¬ Research: Multi-document analysis and synthesis
- π¬ Chatbots: Context-aware conversational AI
- πΌοΈ Multimodal Analysis: Documents with text, images, and charts
- π€ Autonomous Systems: Agent-based intelligent retrieval
- π Performance Evaluation: RAG system benchmarking and optimization
- π Self-Correcting Systems: Adaptive and corrective RAG implementations
π― Master RAG: From basic retrieval to advanced fusion techniques, this repository provides everything needed to build Development-ready RAG systems.