Dataset of synthetic timing cones across multiple synthetic netlists for timing analysis
- Python 3.7 or higher
- PyTorch
- PyTorch Geometric
- NumPy
- scikit-learn
You can install dependencies with:
pip install -r requirements.txt
-
Clone the repository:
git clone https://github.com/ASU-VDA-Lab/MIMIC.git cd MIMIC
-
(Optional) Create and activate a virtual environment:
python -m venv venv source venv/bin/activate # Linux/macOS venv\Scripts\activate # Windows
-
Install Python dependencies:
pip install -r requirements.txt
Run the generator via the src.main
module. Available options:
--num-nodes
(-n
): Number of nodes to condition on (default: 2000).--clock-period
(-c
): Clock period to condition on (default: 120).
# Example: generate DAGs for 1500 nodes and clock period 200
python -m src.main --num-nodes 1500 --clock-period 200
The script will:
- Load model data and precomputed transition biases.
- Load trained models to device (CPU or GPU).
- Sample layer-size sequences from the VAE.
- Construct and print summaries of each generated graph.
For each sample, you'll see:
Graph #1 Summary:
Number of nodes: <n>
Number of edges: <e>
Layer sizes: [ ... ]
MIT License. See LICENSE for details.