Skip to content

ASU-VDA-Lab/MIMIC

Repository files navigation

MIMIC

Dataset of synthetic timing cones across multiple synthetic netlists for timing analysis

Requirements

  • Python 3.7 or higher
  • PyTorch
  • PyTorch Geometric
  • NumPy
  • scikit-learn

You can install dependencies with:

pip install -r requirements.txt

Installation

  1. Clone the repository:

    git clone https://github.com/ASU-VDA-Lab/MIMIC.git
    cd MIMIC
  2. (Optional) Create and activate a virtual environment:

    python -m venv venv
    source venv/bin/activate   # Linux/macOS
    venv\Scripts\activate      # Windows
  3. Install Python dependencies:

    pip install -r requirements.txt

Usage

Run the generator via the src.main module. Available options:

  • --num-nodes (-n): Number of nodes to condition on (default: 2000).
  • --clock-period (-c): Clock period to condition on (default: 120).
# Example: generate DAGs for 1500 nodes and clock period 200
python -m src.main --num-nodes 1500 --clock-period 200

The script will:

  1. Load model data and precomputed transition biases.
  2. Load trained models to device (CPU or GPU).
  3. Sample layer-size sequences from the VAE.
  4. Construct and print summaries of each generated graph.

Output

For each sample, you'll see:

Graph #1 Summary:
  Number of nodes: <n>
  Number of edges: <e>
  Layer sizes: [ ... ]

License

MIT License. See LICENSE for details.

About

Dataset of synthetic timing cones across multiple synthetic netlists for timing analysis

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •