Build production-ready AI agents with progressive disclosure
Agentix is the leading framework for building AI agents with progressive disclosure - start simple, scale to enterprise. From zero-config agents to sophisticated multi-agent systems with Anthropic Claude integration and Model Context Protocol (MCP) support.
- Key Features
- Quick Start
- Architecture
- Documentation
- Configuration
- Examples
- Contributing
- Security
- License
- Acknowledgments
- Support
- Zero-config:
agentix.agent("MyBot")
- instant agent creation - Configuration-based: YAML/JSON for structured development
- Graph-based: Full control with seven-node architecture
- Enterprise-ready: Production deployment and monitoring
- Anthropic Claude: Direct API integration (Claude-3.5 Sonnet, Opus, Haiku)
- OpenRouter: 100+ models from multiple providers
- OpenAI: GPT-4, GPT-3.5 with function calling
- Streaming: Real-time responses across all providers
- Tool Ecosystem: Filesystem, web search, database, HTTP API, email
- Server Discovery: Automatic MCP server detection and installation
- Cross-Agent Sharing: Tools and memory across agent instances
- CLI Management:
agentix mcp
commands for server management
- Temporal Knowledge Graphs: Graphiti-powered memory
- Cross-Agent Memory: Shared memory via MCP protocol
- Memory Scoping: Per-user, per-session, global memory
- Real-time Sync: Memory drift tracking and visualization
- Python 3.8 or higher
- pip package manager
# Basic installation
pip install agentix
# With MCP support (recommended)
pip install agentix[mcp]
# Full installation with all features
pip install agentix[all]
# Development installation
git clone https://github.com/AP3X-Dev/agentix.git
cd agentix
pip install -e ".[dev]"
Create a .env
file or set environment variables:
# Required for Claude integration
export ANTHROPIC_API_KEY="your_anthropic_key"
# Optional for other providers
export OPENAI_API_KEY="your_openai_key"
export OPENROUTER_API_KEY="your_openrouter_key"
import agentix
# Create an agent in one line
agent = agentix.agent("MyBot")
response = agent("What's the weather like?")
print(response)
import agentix
# Claude agent with filesystem and web search tools
agent = agentix.anthropic_agent(
name="ClaudeBot",
model="claude-3-5-sonnet-20241022",
mcp_servers=["filesystem", "web_search"]
)
response = agent("""
Search for information about quantum computing,
save the results to a file, and summarize the key points.
""")
import agentix
# Test the same query across different models
models = [
("Claude-3.5 Sonnet", "claude-3-5-sonnet-20241022"),
("GPT-4 Turbo", "openai/gpt-4-turbo"),
("Gemini Pro", "google/gemini-pro")
]
for name, model in models:
agent = agentix.create_agent(f"{name}Agent", llm_model=model)
response = agent("Explain machine learning in simple terms")
print(f"{name}: {response[:100]}...")
from agentix.memory import TemporalKnowledgeGraph, TemporalNode, TemporalEdge
from datetime import datetime
# Create temporal knowledge graph
tkg = TemporalKnowledgeGraph()
# Add temporal nodes
ai_node = TemporalNode(
node_type="concept",
label="Artificial Intelligence",
properties={"definition": "Machine intelligence"},
created_at=datetime.now()
)
# Add to graph
tkg.add_node(ai_node)
# Query with temporal constraints
from agentix.memory import TemporalQuery
query = TemporalQuery(
query_type="search",
node_types=["concept"],
time_range=(datetime(2024, 1, 1), datetime.now())
)
results = tkg.query(query)
from agentix.tools import WebSearchTool, WebSearchConfig
# Configure web search tool
search_config = WebSearchConfig(
name="web_search",
description="Web search with content extraction",
search_engine="duckduckgo",
max_results=5,
extract_content=True
)
# Create and use tool
search_tool = WebSearchTool(search_config)
async def search_example():
result = await search_tool.run({
"query": "latest AI research",
"max_results": 3
})
return result
from agentix.guardrails import InputValidator, SafetyChecker
from agentix.guardrails import InputValidationConfig, SafetyConfig
# Input validation
input_config = InputValidationConfig(
max_input_length=1000,
block_personal_info=True,
validate_urls=True
)
validator = InputValidator(input_config)
validation_result = validator.validate("User input text")
# Safety checking
safety_config = SafetyConfig(
check_harmful_content=True,
check_personal_info=True,
safety_threshold=0.8
)
safety_checker = SafetyChecker(safety_config)
safety_result = safety_checker.check_safety("Content to check")
- LLM Nodes: Primary reasoning and text generation
- Tool Nodes: External action execution (APIs, databases, etc.)
- Control Nodes: Flow control and decision making
- Memory Nodes: Temporal knowledge management
- Guardrail Nodes: Safety and validation
- Fallback Nodes: Error handling and recovery
- Human Input Nodes: Human-in-the-loop integration
Unlike static RAG systems, Agentix uses temporal knowledge graphs that:
- Track knowledge validity over time
- Support dynamic relationship updates
- Enable temporal reasoning and queries
- Provide automatic knowledge consolidation
- Contributing Guide - How to contribute to Agentix
- Changelog - Version history and changes
- Examples Directory - Working code examples
- Demo Applications - Complete demo applications
- License - MIT License details
π Full documentation coming soon! We're working on comprehensive docs including API reference, tutorials, and guides.
# LLM Provider API Keys
export OPENAI_API_KEY="your_openai_key"
export ANTHROPIC_API_KEY="your_anthropic_key"
# Search Engine API Keys
export GOOGLE_API_KEY="your_google_key"
export GOOGLE_SEARCH_ENGINE_ID="your_search_engine_id"
export BING_API_KEY="your_bing_key"
# Database Configuration
export DATABASE_URL="postgresql://user:pass@localhost/agentix"
# Framework Configuration
export AGENTIX_ENVIRONMENT="development"
export AGENTIX_LOG_LEVEL="INFO"
# agentix_config.yaml
framework_version: "0.1.0"
environment: "development"
log_level: "INFO"
memory_config:
enable_temporal_graph: true
enable_episodic_memory: true
auto_consolidation: true
tool_config:
default_timeout: 30
max_retries: 3
enable_validation: true
security_config:
enable_guardrails: true
validate_inputs: true
validate_outputs: true
See the examples/
directory for comprehensive examples:
basic_agent_example.py
- Complete agent with seven-node blueprintclaude_mcp_demo.py
- Claude integration with MCP toolsopenrouter_demo.py
- OpenRouter multi-model examplesprogressive_disclosure_demo.py
- Progressive disclosure patterns
Check out the demo/
directory for complete applications:
simple_demo.py
- Basic agent demonstrationintelligent_research_assistant.py
- Research assistant with web searchrun_demo.py
- Interactive demo runner
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
# Clone repository
git clone https://github.com/AP3X-Dev/agentix.git
cd agentix
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install development dependencies
pip install -e ".[dev]"
# Verify installation
python -c "import agentix; print('Agentix installed successfully!')"
# Run tests
pytest
# Run code quality checks
black agentix/
isort agentix/
mypy agentix/
flake8 agentix/
# Run all tests
pytest
# Run with coverage
pytest --cov=agentix --cov-report=html
# Run specific test file
pytest tests/test_agent.py
# Run integration tests
pytest tests/integration/
- Never commit API keys to version control
- Use environment variables or
.env
files - Rotate keys regularly
- Use different keys for development and production
If you discover a security vulnerability, please email GuerrillaMedia702@gmail.com instead of creating a public issue.
This project is licensed under the MIT License - see the LICENSE file for details.
- Inspired by the LangGraph framework
- Built with Pydantic for type safety
- Temporal knowledge graph concepts from academic research
- Community feedback and contributions
- π Issues: GitHub Issues - Bug reports and feature requests
- π¬ Discussions: GitHub Discussions - Community Q&A
- π§ Email: GuerrillaMedia702@gmail.com - Direct support
- π Documentation: Coming soon - Comprehensive guides and API reference
- Check existing issues - Your question might already be answered
- Search discussions - Community knowledge base
- Create an issue - For bugs or feature requests
- Start a discussion - For questions and ideas
Agentix - Building the future of AI agents with temporal intelligence.