The Local O1 Reasoning System (LORS) is an advanced distributed reasoning framework that implements a novel approach to prompt analysis and response generation using local Large Language Models (LLMs). Inspired by OpenAI's o1 architecture, LORS utilizes a multi-agent system with dynamic scaling capabilities to process complex queries through parallel processing pipelines of varying computational depths.
LORS Architecture
├── Prompt Analysis Engine
│ ├── Complexity Analyzer
│ ├── Domain Classifier
│ └── Cognitive Load Estimator
├── Agent Management System
│ ├── Fast Reasoning Agents (llama3.2)
│ └── Deep Reasoning Agents (llama3.1)
├── Response Synthesis Pipeline
│ ├── Thought Aggregator
│ ├── Context Enhancer
│ └── Final Synthesizer
└── Response Management System
├── Intelligent Naming
└── Structured Storage
The system employs a sophisticated prompt analysis mechanism that evaluates:
-
Linguistic Complexity Metrics
- Sentence structure depth (dependency parsing)
- Technical term density
- Named entity recognition
- Cognitive load estimation
-
Domain-Specific Analysis
domain_complexity = { 'technical': [algorithm, system, framework], 'scientific': [hypothesis, analysis, theory], 'mathematical': [equation, formula, calculation], 'business': [strategy, market, optimization] }
-
Complexity Scoring Algorithm
C = Σ(wi * fi) where: C = total complexity score wi = weight of feature i fi = normalized value of feature i
The system implements an adaptive scaling mechanism based on prompt complexity:
Complexity Score | Fast Agents | Deep Agents | Use Case |
---|---|---|---|
80-100 | 5 | 3 | Complex technical analysis |
60-79 | 4 | 2 | Moderate complexity |
40-59 | 3 | 2 | Standard analysis |
0-39 | 2 | 1 | Simple queries |
Fast Reasoning Agents (llama3.2)
- Optimized for rapid initial analysis
- Lower token limit for quicker processing
- Focus on key concept identification
- Parameters:
{ 'temperature': 0.7, 'max_tokens': 150, 'response_time_target': '< 2s' }
Deep Reasoning Agents (llama3.1)
- Designed for thorough analysis
- Higher token limit for comprehensive responses
- Focus on relationships and implications
- Parameters:
{ 'temperature': 0.9, 'max_tokens': 500, 'response_time_target': '< 5s' }
async def process_prompt(prompt):
complexity_analysis = analyze_prompt_complexity(prompt)
fast_thoughts = await process_fast_agents(prompt)
enhanced_context = synthesize_initial_thoughts(fast_thoughts)
deep_thoughts = await process_deep_agents(enhanced_context)
return synthesize_final_response(fast_thoughts, deep_thoughts)
The system uses a weighted feature analysis approach:
def calculate_complexity_score(features):
weights = {
'sentence_count': 0.1,
'avg_sentence_length': 0.15,
'subjectivity': 0.1,
'named_entities': 0.15,
'technical_term_count': 0.2,
'domain_complexity': 0.1,
'cognitive_complexity': 0.1,
'dependency_depth': 0.1
}
return weighted_sum(features, weights)
The system implements a three-phase synthesis approach:
- Fast Analysis Aggregation
- Context Enhancement
- Deep Analysis Integration
- Average response time: 2-8 seconds
- Memory usage: 4-8GB
- GPU utilization: 60-80%
pip install ollama asyncio rich textblob spacy nltk
python -m spacy download en_core_web_sm
python local-o1-reasoning.py -p "Your complex query here"
Responses are stored in JSON format:
{
"prompt": "original_prompt",
"timestamp": "ISO-8601 timestamp",
"complexity_analysis": {
"score": 75.5,
"features": {...}
},
"result": {
"fast_analysis": [...],
"deep_analysis": [...],
"final_synthesis": "..."
}
}
-
Install Ollama
# For Linux curl -L https://ollama.com/download/ollama-linux-amd64 -o ollama chmod +x ollama ./ollama serve # For Windows # Download and install from https://ollama.com/download/windows
-
Install Required Models
# Install the fast reasoning model (3B Model - fast thought) ollama pull llama3.2 # Install the deep reasoning model (8B Model - deep thought) ollama pull llama3.1 # Verify installations ollama list
Expected output:
NAME ID SIZE MODIFIED llama3.2:latest 6c2d00dcdb27 2.1 GB 4 seconds ago llama3.1:latest 3c46ab11d5ec 4.9 GB 6 days ago
-
Set Up Python Environment
# Create virtual environment python -m venv lors-env # Activate environment # On Windows lors-env\Scripts\activate # On Unix or MacOS source lors-env/bin/activate # Install requirements pip install -r requirements.txt # Install spaCy language model python -m spacy download en_core_web_sm
# Simple query
python local-o1-reasoning.py -p "Explain the concept of quantum entanglement"
# Complex analysis
python local-o1-reasoning.py -p "Analyze the implications of quantum computing on modern cryptography systems and propose potential mitigation strategies"
-
Model Loading Issues
# Verify model status ollama list # Restart Ollama service if needed ollama stop ollama serve
-
GPU Memory Issues
- Ensure no other GPU-intensive applications are running
- Monitor GPU usage:
nvidia-smi -l 1
-
Common Error Solutions
- If models fail to load:
ollama pull [model_name] --force
- If out of CUDA memory: Reduce concurrent agent count in configuration
- If response directory error: Check write permissions
- If models fail to load:
LORS/
├── local-o1-reasoning.py
├── requirements.txt
├── responses/
│ └── [automated response files]
└── README.md
MIT License
We welcome contributions! Please see our contributing guidelines for more information.