🔥G-UNETR++: Liver tumor segmentation from CT images
Paper: G-UNETR++
Our code is based on UNETR++ code.
But, we modified the code for easy implementation.
Our GPU is RTX 3090 GPU
.
- Create and activate conda environment
conda create --name gunetr_pp python=3.9
conda activate gunetr_pp
- Install pytorch
# cuda 11.3
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
It is important that check your cuda version
.
Please, see the pytorch document.
- Install other dependencies
pip install -r requirements.txt
In paper, we teseted LiTS
, and 3Dircadb
.
GUNETR_pplus_LiTS
├── DATASET_Synapse
│ ├── unetr_pp_raw
│ ├── unetr_pp_raw_data
│ ├── Task02_Synapse
│ ├── Task002_Synapse
│ ├── seg_gt
│ ├── 3Dircadb
│ ├── LiTS
│ ├── segmentation-3.nii
│ ├── ...
│ └── segmentation-123.nii
│ ├── unetr_pp_Data_plans_v2.1_stage1
│ ├── 3Dircadb
│ ├── LiTS
│ ├── volume-3.nii
│ ├── ...
│ └── volume-123.nii
│ ├── masking
│ ├── 3Dircadb
│ ├── LiTS
│ ├── masking-3.nii
│ ├── ...
│ └── masking-123.nii
│ └── unetr_pp_Plansv2.1_plans_3D.pkl
LiTS dataset: 131 cases.
3Dircadb link: 20 cases.
Our LiTS-testset number is
3, 17. 18, 28, 33, 37, 43, 64, 70, 77, 80, 90, 100, 104, 110, and 123
.
Please see whole_liver_segmentation.
GUNETR_pplus_LiTS
├── output_synapse
│ ├── 3d_fullres
│ ├── Task002_Synapse
│ ├── unetr_pp_trainer_synapse__unetr_pp_Plansv2.1
│ ├── fold_4
│ ├── validation_raw
│ ├── model_final_checkpoint.model
│ └── model_final_checkpoint.model.pkl
Final-model-chekcpoint: link.
-
Make masking files
Using LiTS Whole liver segmentation model. -
Make npy files (automatic apply masking)
$> python LiTS_npy_make.py
You select the options, LiTS
, and 3Dircadb
.
- Evaluation script
$> cd ./evaluation_scripts
$> sh run_evaluation_synapse.sh
You select the options, LiTS
, and 3Dircadb
.
- Calculation metrics
Please see our jupyter notebook.
We implemented all of metric classes.
You can control post-processing option through
flag_post = True
.
Model | DSC | VOE | RAVD | ASSD | RMSD |
---|---|---|---|---|---|
Chen et al. | 0.711 | 0.401 | 0.023 | 7.201 | 13.445 |
Chen et al. | 0.705 | 0.395 | 0.534 | 8.286 | 13.680 |
Chen et al. | 0.742 | 0.367 | 0.107 | 5.996 | 10.853 |
Jiang et al. | 0.762 | 0.371 | 0.012 | --- | --- |
Ours (G-UNTER++) | 0.844 | 0.263 | 0.133 | 1.317 | 3.189 |
@ARTICLE{
title={G-UNETR++},
author={},
journal={},
year={2024},
doi={}}