🔥G-UNETR++: A gradient-enhanced network for accurate and robust liver segmentation from CT images
Paper: G-UNETR++
Our code is based on UNETR++ code.
But, we modified the code for easy implementation.
Our GPU is RTX 3090 GPU
.
- Create and activate conda environment
conda create --name gunetr_pp python=3.9
conda activate gunetr_pp
- Install pytorch
# cuda 11.3
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
It is important that check your cuda version
.
Please, see the pytorch document.
- Install other dependencies
pip install -r requirements.txt
In paper, we teseted MSD
.
GUNETR_pplus_LiTS
├── DATASET_Synapse
│ ├── unetr_pp_raw
│ ├── unetr_pp_raw_data
│ ├── Task02_Synapse
│ ├── Task002_Synapse
│ ├── seg_gt
│ ├── test
│ ├── hepaticvessel_001.nii.gz
│ ├── hepaticvessel_004.nii.gz
│ ├── ...
│ └── hepaticvessel_455.nii.gz
│ ├── unetr_pp_Data_plans_v2.1_stage1
│ ├── test
│ ├── hepaticvessel_001.nii.gz
│ ├── hepaticvessel_004.nii.gz
│ ├── ...
│ └── hepaticvessel_455.nii.gz
│ └── unetr_pp_Plansv2.1_plans_3D.pkl
MSD dataset: link.
Our MSD-testset(50) is
1, 4, 9, 10, 11, 13, 15, 21, 27, 44, 50, 52, 53, 62, 66, 69, 71, 75, 82, 89, 91, 92, 101, 116, 117, 124, 136, 140, 147, 171, 179, 183, 213, 215, 229, 245, 265, 269, 275, 287, 305, 307, 359, 375, 377, 399, 425, 441, 445, 455
.
GUNETR_pplus_LiTS
├── output_synapse
│ ├── 3d_fullres
│ ├── Task002_Synapse
│ ├── unetr_pp_trainer_synapse__unetr_pp_Plansv2.1
│ ├── fold_4
│ ├── validation_raw
│ ├── model_best.model
│ └── model_best.model.pkl
Whole-liver-best chekcpoint: link.
- Make whole npy files
$> python MSD_npy_make.py
You select the options, whole
.
- Evaluation script
$> cd ./evaluation_scripts
$> sh run_evaluation_synapse.sh
You select the options, whole
.
- Calculation metrics
Please see our jupyter notebook.
We implemented all of metric classes.
You can control post-processing option through
flag_post = True
.
Model | DSC | ASSD | MSSD |
---|---|---|---|
Ours (w pp) | 0.9752(±0.009) | 0.7700 | 18.1107 |
Ours (w/o pp) | 0.9753(±0.010) | 1.5421 | 45.0481 |
@ARTICLE{
title={G-UNETR++: A gradient-enhanced network for accurate and robust liver segmentation from CT images},
author={Seungyoo Lee, Kyujin Han, Hangyeul Shin, Harin Park, Xiaopeng Yang, Jae Do Yang, Hee Chul Yu, Heecheon You},
journal={},
year={2024},
doi={}}