Skip to content

Commit aba958c

Browse files
authored
Merge pull request #16 from AAGI-AUS/feature/update-readme
Feature/update readme
2 parents cdc6adb + 2c782ac commit aba958c

File tree

5 files changed

+169
-161
lines changed

5 files changed

+169
-161
lines changed

DESCRIPTION

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,8 @@ Description: The InPlotSampling package provides a way for researchers
1818
and Kravchuk (2021) <https://doi.org/10.1007/s13253-021-00439-1> and
1919
enables easy use of the methods.
2020
License: MIT + file LICENSE
21-
URL: https://biometryhub.github.io/InPlotSampling/
22-
BugReports: https://github.com/biometryhub/InPlotSampling/issues
21+
URL: https://aagi-aus.github.io/InPlotSampling/
22+
BugReports: https://github.com/AAGI-AUS/InPlotSampling/issues
2323
Depends:
2424
R (>= 3.5.0)
2525
Imports:

README.Rmd

Lines changed: 85 additions & 78 deletions
Original file line numberDiff line numberDiff line change
@@ -28,8 +28,8 @@ min.r <- substr(description[, "Depends"], 7, 11)
2828

2929
[![Project Status: WIP – Initial development is in progress, but there has not yet been a stable, usable release suitable for the public.](http://www.repostatus.org/badges/latest/wip.svg)](http://www.repostatus.org/#wip)
3030
[![Codecov test coverage](https://codecov.io/gh/biometryhub/RankedSetSampling/branch/main/graph/badge.svg)](https://codecov.io/gh/biometryhub/RankedSetSampling?branch=main)
31-
[![R build status](https://github.com/biometryhub/InPlotSampling/workflows/R-CMD-check/badge.svg)](https://github.com/biometryhub/InPlotSampling/actions)
32-
![pkgdown](https://github.com/biometryhub/InPlotSampling/workflows/pkgdown/badge.svg)
31+
[![R build status](https://github.com/AAGI-AUS/InPlotSampling/workflows/R-CMD-check/badge.svg)](https://github.com/AAGI-AUS/InPlotSampling/actions)
32+
![pkgdown](https://github.com/AAGI-AUS/InPlotSampling/workflows/pkgdown/badge.svg)
3333
<br>
3434
[![minimal R version](https://img.shields.io/badge/R%3E%3D-`r min.r`-6666ff.svg)](https://cran.r-project.org/)
3535
[![packageversion](https://img.shields.io/badge/Package%20version-`r gsub('-', '--', version)`-orange.svg?style=flat-square)](/commits/main)
@@ -38,15 +38,22 @@ min.r <- substr(description[, "Depends"], 7, 11)
3838

3939
<!-- badges: end -->
4040

41-
The InPlotSampling package provides a way for researchers to easily implement Ranked Set Sampling in practice.
41+
The InPlotSampling package provides a way for researchers to easily implement these sampling methods in
42+
practice.
43+
44+
- Judgment post-stratified (JPS) sampling
45+
- Ranked set sampling (RSS)
46+
- Porbability-proportional to size (PPS) sampling
47+
- Spatially balanced sampling (SBS)
48+
- Two-stage cluster sampling
4249

4350
## Table of Contents
4451

4552
<!-- vim-markdown-toc GFM -->
4653

4754
* [Sampling Methods](#sampling-methods)
4855
* [JPS Sampling](#jps-sampling)
49-
* [RSS Sampling](#rss-sampling)
56+
* [RSS](#rss-sampling)
5057
* [Installation](#installation)
5158
* [Examples](#examples)
5259
* [JPS Sample and Estimator](#jps-sample-and-estimator)
@@ -64,101 +71,101 @@ Sampling is made following the diagram below.
6471

6572
![JPS sampling diagram](man/figures/jps-diagram.drawio.svg)
6673

67-
### RSS Sampling
74+
### RSS
6875

6976
Sampling is made following the diagram below.
7077

71-
![RSS sampling diagram](man/figures/rss-diagram.drawio.svg)
78+
![RSS diagram](man/figures/rss-diagram.drawio.svg)
7279

7380
## Installation
7481

7582
Use the following code to install this package:
7683

77-
```{r eval=F}
84+
```{r, eval=F}
7885
if (!require("remotes")) install.packages("remotes")
79-
remotes::install_github("biometryhub/InPlotSampling", upgrade = FALSE)
86+
remotes::install_github("AAGI-AUS/InPlotSampling", upgrade = FALSE)
8087
```
8188

8289
## Examples
8390

8491
### JPS Sample and Estimator
8592

8693
<details>
87-
<summary>JPS sample and estimator</summary>
88-
89-
``` r
90-
set.seed(112)
91-
population_size <- 600
92-
# the number of samples to be ranked in each set
93-
H <- 3
94-
95-
with_replacement <- FALSE
96-
sigma <- 4
97-
mu <- 10
98-
n_rankers <- 3
99-
# sample size
100-
n <- 30
101-
102-
rhos <- rep(0.75, n_rankers)
103-
taus <- sigma * sqrt(1 / rhos^2 - 1)
104-
population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)
105-
106-
data <- InPlotSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement)
107-
data <- data[order(data[, 2]), ]
108-
109-
InPlotSampling::rss_jps_estimate(
110-
data,
111-
set_size = H,
112-
method = "JPS",
113-
confidence = 0.80,
114-
replace = with_replacement,
115-
model_based = FALSE,
116-
pop_size = population_size
117-
)
118-
#> Estimator Estimate Standard Error 80% Confidence intervals
119-
#> 1 UnWeighted 9.570 0.526 8.88,10.26
120-
#> 2 Sd.Weighted 9.595 0.569 8.849,10.341
121-
#> 3 Aggregate Weight 9.542 0.500 8.887,10.198
122-
#> 4 JPS Estimate 9.502 0.650 8.651,10.354
123-
#> 5 SRS estimate 9.793 0.783 8.766,10.821
124-
#> 6 Minimum 9.542 0.500 8.887,10.198
125-
```
94+
<summary>JPS sample and estimator</summary>
95+
96+
``` r
97+
set.seed(112)
98+
population_size <- 600
99+
# the number of samples to be ranked in each set
100+
H <- 3
101+
102+
with_replacement <- FALSE
103+
sigma <- 4
104+
mu <- 10
105+
n_rankers <- 3
106+
# sample size
107+
n <- 30
108+
109+
rhos <- rep(0.75, n_rankers)
110+
taus <- sigma * sqrt(1 / rhos^2 - 1)
111+
population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)
112+
113+
data <- InPlotSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement)
114+
data <- data[order(data[, 2]), ]
115+
116+
InPlotSampling::rss_jps_estimate(
117+
data,
118+
set_size = H,
119+
method = "JPS",
120+
confidence = 0.80,
121+
replace = with_replacement,
122+
model_based = FALSE,
123+
pop_size = population_size
124+
)
125+
#> Estimator Estimate Standard Error 80% Confidence intervals
126+
#> 1 UnWeighted 9.570 0.526 8.88,10.26
127+
#> 2 Sd.Weighted 9.595 0.569 8.849,10.341
128+
#> 3 Aggregate Weight 9.542 0.500 8.887,10.198
129+
#> 4 JPS Estimate 9.502 0.650 8.651,10.354
130+
#> 5 SRS estimate 9.793 0.783 8.766,10.821
131+
#> 6 Minimum 9.542 0.500 8.887,10.198
132+
```
126133
</details>
127134

128135
### SBS PPS Sample and Estimator
129136

130137
<details>
131-
<summary>SBS PPS sample and estimator</summary>
132-
133-
``` r
134-
set.seed(112)
135-
136-
# SBS sample size, PPS sample size
137-
sample_sizes <- c(5, 5)
138-
139-
n_population <- 233
140-
k <- 0:(n_population - 1)
141-
x1 <- sample(1:13, n_population, replace = TRUE) / 13
142-
x2 <- sample(1:8, n_population, replace = TRUE) / 8
143-
y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1
144-
measured_sizes <- y * runif(n = n_population, min = 0, max = 4)
145-
146-
population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4)
147-
sample_result <- sbs_pps_sample(population, sample_sizes)
148-
149-
# estimate the population mean and construct a confidence interval
150-
df_sample <- sample_result$sample
151-
sample_id <- df_sample[, 1]
152-
y_sample <- y[sample_id]
153-
154-
sbs_pps_estimates <- sbs_pps_estimate(
155-
population, sample_sizes, y_sample, df_sample,
156-
n_bootstrap = 100, alpha = 0.05
157-
)
158-
print(sbs_pps_estimates)
159-
#> n1 n2 Estimate St.error 95% Confidence intervals
160-
#> 1 5 5 2.849 0.1760682 2.451,3.247
161-
```
138+
<summary>SBS PPS sample and estimator</summary>
139+
140+
``` r
141+
set.seed(112)
142+
143+
# SBS sample size, PPS sample size
144+
sample_sizes <- c(5, 5)
145+
146+
n_population <- 233
147+
k <- 0:(n_population - 1)
148+
x1 <- sample(1:13, n_population, replace = TRUE) / 13
149+
x2 <- sample(1:8, n_population, replace = TRUE) / 8
150+
y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1
151+
measured_sizes <- y * runif(n = n_population, min = 0, max = 4)
152+
153+
population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4)
154+
sample_result <- sbs_pps_sample(population, sample_sizes)
155+
156+
# estimate the population mean and construct a confidence interval
157+
df_sample <- sample_result$sample
158+
sample_id <- df_sample[, 1]
159+
y_sample <- y[sample_id]
160+
161+
sbs_pps_estimates <- sbs_pps_estimate(
162+
population, sample_sizes, y_sample, df_sample,
163+
n_bootstrap = 100, alpha = 0.05
164+
)
165+
print(sbs_pps_estimates)
166+
#> n1 n2 Estimate St.error 95% Confidence intervals
167+
#> 1 5 5 2.849 0.1760682 2.451,3.247
168+
```
162169
</details>
163170

164171
# Citing this package

0 commit comments

Comments
 (0)