@@ -22,15 +22,21 @@ version](https://img.shields.io/badge/R%3E%3D-3.5.0-6666ff.svg)](https://cran.r-
2222<!-- badges: end -->
2323
2424The InPlotSampling package provides a way for researchers to easily
25- implement Ranked Set Sampling in practice.
25+ implement these sampling methods in practice.
26+
27+ - Judgment post-stratified (JPS) sampling
28+ - Ranked set sampling (RSS)
29+ - Porbability-proportional to size (PPS) sampling
30+ - Spatially balanced sampling (SBS)
31+ - Two-stage cluster sampling
2632
2733## Table of Contents
2834
2935<!-- vim-markdown-toc GFM -->
3036
3137- [ Sampling Methods] ( #sampling-methods )
3238 - [ JPS Sampling] ( #jps-sampling )
33- - [ RSS Sampling ] ( #rss-sampling )
39+ - [ RSS] ( #rss-sampling )
3440- [ Installation] ( #installation )
3541- [ Examples] ( #examples )
3642 - [ JPS Sample and Estimator] ( #jps-sample-and-estimator )
@@ -52,14 +58,13 @@ alt="JPS sampling diagram" />
5258<figcaption aria-hidden =" true " >JPS sampling diagram</figcaption >
5359</figure >
5460
55- ### RSS Sampling
61+ ### RSS
5662
5763Sampling is made following the diagram below.
5864
5965<figure >
60- <img src="man/figures/rss-diagram.drawio.svg"
61- alt="RSS sampling diagram" />
62- <figcaption aria-hidden =" true " >RSS sampling diagram</figcaption >
66+ <img src =" man/figures/rss-diagram.drawio.svg " alt =" RSS diagram " />
67+ <figcaption aria-hidden =" true " >RSS diagram</figcaption >
6368</figure >
6469
6570## Installation
@@ -128,33 +133,33 @@ SBS PPS sample and estimator
128133</summary >
129134
130135``` r
131- set.seed(112 )
132-
133- # SBS sample size, PPS sample size
134- sample_sizes <- c(5 , 5 )
135-
136- n_population <- 233
137- k <- 0 : (n_population - 1 )
138- x1 <- sample(1 : 13 , n_population , replace = TRUE ) / 13
139- x2 <- sample(1 : 8 , n_population , replace = TRUE ) / 8
140- y <- (x1 + x2 ) * runif(n = n_population , min = 1 , max = 2 ) + 1
141- measured_sizes <- y * runif(n = n_population , min = 0 , max = 4 )
142-
143- population <- matrix (cbind(k , x1 , x2 , measured_sizes ), ncol = 4 )
144- sample_result <- sbs_pps_sample(population , sample_sizes )
145-
146- # estimate the population mean and construct a confidence interval
147- df_sample <- sample_result $ sample
148- sample_id <- df_sample [, 1 ]
149- y_sample <- y [sample_id ]
150-
151- sbs_pps_estimates <- sbs_pps_estimate(
152- population , sample_sizes , y_sample , df_sample ,
153- n_bootstrap = 100 , alpha = 0.05
154- )
155- print(sbs_pps_estimates )
156- # > n1 n2 Estimate St.error 95% Confidence intervals
157- # > 1 5 5 2.849 0.1760682 2.451,3.247
136+ set.seed(112 )
137+
138+ # SBS sample size, PPS sample size
139+ sample_sizes <- c(5 , 5 )
140+
141+ n_population <- 233
142+ k <- 0 : (n_population - 1 )
143+ x1 <- sample(1 : 13 , n_population , replace = TRUE ) / 13
144+ x2 <- sample(1 : 8 , n_population , replace = TRUE ) / 8
145+ y <- (x1 + x2 ) * runif(n = n_population , min = 1 , max = 2 ) + 1
146+ measured_sizes <- y * runif(n = n_population , min = 0 , max = 4 )
147+
148+ population <- matrix (cbind(k , x1 , x2 , measured_sizes ), ncol = 4 )
149+ sample_result <- sbs_pps_sample(population , sample_sizes )
150+
151+ # estimate the population mean and construct a confidence interval
152+ df_sample <- sample_result $ sample
153+ sample_id <- df_sample [, 1 ]
154+ y_sample <- y [sample_id ]
155+
156+ sbs_pps_estimates <- sbs_pps_estimate(
157+ population , sample_sizes , y_sample , df_sample ,
158+ n_bootstrap = 100 , alpha = 0.05
159+ )
160+ print(sbs_pps_estimates )
161+ # > n1 n2 Estimate St.error 95% Confidence intervals
162+ # > 1 5 5 2.849 0.1760682 2.451,3.247
158163```
159164
160165</details >
0 commit comments