Skip to content

0xsouravm/barebones-did-node

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Barebones Did Pallet

The DID (Decentralized Identifier) Pallet provides essential functionality for managing Decentralized Identifiers (DIDs) within a blockchain framework. It serves as an educational example for developers to understand the core components of writing a FRAME pallet, while also introducing them to the concept of DIDs.

The pallet includes features such as storage mappings for DIDs to associated documents and account IDs, event declarations, error handling, and dispatchable functions for creating, deleting, and delegating DIDs.

It is designed for beginner tutorials and as a starting point for creating new pallets that handle DIDs, but it is not intended for production use. The pallet also includes mechanisms for validating DID formats and ensuring the integrity of DID-related operations.

Getting Started

Depending on your operating system and Rust version, there might be additional packages required to compile this template. Check the Install instructions for your platform for the most common dependencies. Alternatively, you can use one of the alternative installation options.

Build

Use the following command to build the node without launching it:

cargo build --package barebones-did-node --release

Embedded Docs

After you build the project, you can use the following command to explore its parameters and subcommands:

./target/release/barebones-did-node -h

You can generate and view the Rust Docs for this template with this command:

cargo +nightly doc --open

Single-Node Development Chain

The following command starts a single-node development chain that doesn't persist state:

./target/release/barebones-did-node --dev

To purge the development chain's state, run the following command:

./target/release/barebones-did-node purge-chain --dev

To start the development chain with detailed logging, run the following command:

RUST_BACKTRACE=1 ./target/release/barebones-did-node -ldebug --dev

Development chains:

  • Maintain state in a tmp folder while the node is running.
  • Use the Alice and Bob accounts as default validator authorities.
  • Use the Alice account as the default sudo account.
  • Are preconfigured with a genesis state (/node/src/chain_spec.rs) that includes several pre-funded development accounts.

To persist chain state between runs, specify a base path by running a command similar to the following:

// Create a folder to use as the db base path
$ mkdir my-chain-state

// Use of that folder to store the chain state
$ ./target/release/barebones-did-node --dev --base-path ./my-chain-state/

// Check the folder structure created inside the base path after running the chain
$ ls ./my-chain-state
chains
$ ls ./my-chain-state/chains/
dev
$ ls ./my-chain-state/chains/dev
db keystore network

Template Structure

A Substrate project such as this consists of a number of components that are spread across a few directories.

Node

A blockchain node is an application that allows users to participate in a blockchain network. Substrate-based blockchain nodes expose a number of capabilities:

  • Networking: Substrate nodes use the libp2p networking stack to allow the nodes in the network to communicate with one another.
  • Consensus: Blockchains must have a way to come to consensus on the state of the network. Substrate makes it possible to supply custom consensus engines and also ships with several consensus mechanisms that have been built on top of Web3 Foundation research.
  • RPC Server: A remote procedure call (RPC) server is used to interact with Substrate nodes.

There are several files in the node directory. Take special note of the following:

  • chain_spec.rs: A chain specification is a source code file that defines a Substrate chain's initial (genesis) state. Chain specifications are useful for development and testing, and critical when architecting the launch of a production chain. Take note of the development_config and testnet_genesis functions. These functions are used to define the genesis state for the local development chain configuration. These functions identify some well-known accounts and use them to configure the blockchain's initial state.
  • service.rs: This file defines the node implementation. Take note of the libraries that this file imports and the names of the functions it invokes. In particular, there are references to consensus-related topics, such as the block finalization and forks and other consensus mechanisms such as Aura for block authoring and GRANDPA for finality.

Runtime

In Substrate, the terms "runtime" and "state transition function" are analogous. Both terms refer to the core logic of the blockchain that is responsible for validating blocks and executing the state changes they define. The Substrate project in this repository uses FRAME to construct a blockchain runtime. FRAME allows runtime developers to declare domain-specific logic in modules called "pallets". At the heart of FRAME is a helpful macro language that makes it easy to create pallets and flexibly compose them to create blockchains that can address a variety of needs.

Review the FRAME runtime implementation included in this template and note the following:

  • This file configures several pallets to include in the runtime. Each pallet configuration is defined by a code block that begins with impl $PALLET_NAME::Config for Runtime.
  • The pallets are composed into a single runtime by way of the construct_runtime! macro, which is part of the core FRAME pallet library.

Pallets

The runtime in this project is constructed using many FRAME pallets that ship with the Substrate repository and a template pallet that is defined in the pallets directory.

A FRAME pallet is comprised of a number of blockchain primitives, including:

  • Storage: FRAME defines a rich set of powerful storage abstractions that makes it easy to use Substrate's efficient key-value database to manage the evolving state of a blockchain.
  • Dispatchables: FRAME pallets define special types of functions that can be invoked (dispatched) from outside of the runtime in order to update its state.
  • Events: Substrate uses events to notify users of significant state changes.
  • Errors: When a dispatchable fails, it returns an error.

Each pallet has its own Config trait which serves as a configuration interface to generically define the types and parameters it depends on.

About

A simple DID pallet with a node that serves as a starting point for people beginning with Substrate.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages