- "Data Science from Scratch" (2nd Ed.)의 내용을 Jupyter Notebook 버전으로 정리
- 관련 한글판 : "밑바닥부터 시작하는 데이터 과학"
- 풍부한 예제 코드와 함께 머신러닝의 기본 모델들을 잘 설명한 훌륭한 교재
- 머신러닝의 원리를 수학이 아닌 코드로 이해하고 직접 구현해 볼 수 있음
- 위치 : notebook
- 이해를 돕기 위하여 필요한 설명 및 예시, 코드를 일부 추가하였음
- 번역에 충실하기 보다 내용을 이해하고 전달하기 위하여 개념적인 설명은 원문과 다른 내용이 많음
- 책 내용중 일부 생략 (그냥 자습 가능한 내용, 개인적으로 관심없는 내용, 잘 모르는 내용^^)
(아래 내용 참고)
Here's all the code and examples from the second edition of my book Data Science from Scratch. They require at least Python 3.6.
(If you're looking for the code and examples from the first edition, that's in the first-edition
folder.)
If you want to use the code, you should be able to clone the repo and just do things like
In [1]: from scratch.linear_algebra import dot
In [2]: dot([1, 2, 3], [4, 5, 6])
Out[2]: 32
and so on and so forth.
Two notes:
-
In order to use the library like this, you need to be in the root directory (that is, the directory that contains the
scratch
folder). If you are in thescratch
directory itself, the imports won't work. -
It's possible that it will just work. It's also possible that you may need to add the root directory to your
PYTHONPATH
, if you are on Linux or OSX this is as simple as
export PYTHONPATH=/path/to/where/you/cloned/this/repo
(substituting in the real path, of course).
If you are on Windows, it's potentially more complicated.
- Introduction
- A Crash Course in Python
- Visualizing Data
- Linear Algebra
- Statistics
- Probability
- Hypothesis and Inference
- Gradient Descent
- Getting Data
- Working With Data
- Machine Learning
- k-Nearest Neighbors
- Naive Bayes
- Simple Linear Regression
- Multiple Regression
- Logistic Regression
- Decision Trees
- Neural Networks
- [Deep Learning]
- Clustering
- Natural Language Processing
- Network Analysis
- Recommender Systems
- Databases and SQL
- MapReduce
- Data Ethics
- Go Forth And Do Data Science