[Contract Verification] <Title> #898
-
Team or ProjectNo response EnvironmentTestnet Block ExplorerIssue Type
Contract Address0x3eEBec312413D4e15122C6D35fE1eA6fa607D159 Compiler TypeSingle file zkSolc Version1.5.0 Solc Version0.8.17 Contract NamePluginRepo Contract Code// Sources flattened with hardhat v2.22.3 https://hardhat.org
// SPDX-License-Identifier: AGPL-3.0-or-later AND MIT
// File @openzeppelin/contracts-upgradeable/interfaces/draft-IERC1822Upgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
pragma solidity ^0.8.0;
/**
* @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/
interface IERC1822ProxiableUpgradeable {
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/
function proxiableUUID() external view returns (bytes32);
}
// File @openzeppelin/contracts-upgradeable/interfaces/IERC1967Upgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
pragma solidity ^0.8.0;
/**
* @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
*
* _Available since v4.8.3._
*/
interface IERC1967Upgradeable {
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
}
// File @openzeppelin/contracts-upgradeable/proxy/beacon/IBeaconUpgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
pragma solidity ^0.8.0;
/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/
interface IBeaconUpgradeable {
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {BeaconProxy} will check that this address is a contract.
*/
function implementation() external view returns (address);
}
// File @openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File @openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// File @openzeppelin/contracts-upgradeable/utils/StorageSlotUpgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlotUpgradeable {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// File @openzeppelin/contracts-upgradeable/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
pragma solidity ^0.8.2;
/**
* @dev This abstract contract provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
*
* _Available since v4.1._
*/
abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
// This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
function __ERC1967Upgrade_init() internal onlyInitializing {
}
function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
}
/**
* @dev Returns the current implementation address.
*/
function _getImplementation() internal view returns (address) {
return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
}
/**
* @dev Perform implementation upgrade
*
* Emits an {Upgraded} event.
*/
function _upgradeTo(address newImplementation) internal {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Perform implementation upgrade with additional setup call.
*
* Emits an {Upgraded} event.
*/
function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
_upgradeTo(newImplementation);
if (data.length > 0 || forceCall) {
AddressUpgradeable.functionDelegateCall(newImplementation, data);
}
}
/**
* @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
*
* Emits an {Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
// Upgrades from old implementations will perform a rollback test. This test requires the new
// implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
// this special case will break upgrade paths from old UUPS implementation to new ones.
if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
_setImplementation(newImplementation);
} else {
try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
} catch {
revert("ERC1967Upgrade: new implementation is not UUPS");
}
_upgradeToAndCall(newImplementation, data, forceCall);
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*/
function _getAdmin() internal view returns (address) {
return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
require(newAdmin != address(0), "ERC1967: new admin is the zero address");
StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {AdminChanged} event.
*/
function _changeAdmin(address newAdmin) internal {
emit AdminChanged(_getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
*/
bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/
function _getBeacon() internal view returns (address) {
return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the EIP1967 beacon slot.
*/
function _setBeacon(address newBeacon) private {
require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
require(
AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
"ERC1967: beacon implementation is not a contract"
);
StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
}
/**
* @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
* not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
*
* Emits a {BeaconUpgraded} event.
*/
function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
_setBeacon(newBeacon);
emit BeaconUpgraded(newBeacon);
if (data.length > 0 || forceCall) {
AddressUpgradeable.functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
}
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// File @openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.0;
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*
* _Available since v4.1._
*/
abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
address private immutable __self = address(this);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
require(address(this) != __self, "Function must be called through delegatecall");
require(_getImplementation() == __self, "Function must be called through active proxy");
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
_;
}
function __UUPSUpgradeable_init() internal onlyInitializing {
}
function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
}
/**
* @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
return _IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeTo(address newImplementation) public virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data, true);
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeTo} and {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal override onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// File @openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165Upgradeable {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File @openzeppelin/contracts-upgradeable/utils/introspection/ERC165CheckerUpgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/introspection/ERC165Checker.sol)
pragma solidity ^0.8.0;
/**
* @dev Library used to query support of an interface declared via {IERC165}.
*
* Note that these functions return the actual result of the query: they do not
* `revert` if an interface is not supported. It is up to the caller to decide
* what to do in these cases.
*/
library ERC165CheckerUpgradeable {
// As per the EIP-165 spec, no interface should ever match 0xffffffff
bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
/**
* @dev Returns true if `account` supports the {IERC165} interface.
*/
function supportsERC165(address account) internal view returns (bool) {
// Any contract that implements ERC165 must explicitly indicate support of
// InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
return
supportsERC165InterfaceUnchecked(account, type(IERC165Upgradeable).interfaceId) &&
!supportsERC165InterfaceUnchecked(account, _INTERFACE_ID_INVALID);
}
/**
* @dev Returns true if `account` supports the interface defined by
* `interfaceId`. Support for {IERC165} itself is queried automatically.
*
* See {IERC165-supportsInterface}.
*/
function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
// query support of both ERC165 as per the spec and support of _interfaceId
return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId);
}
/**
* @dev Returns a boolean array where each value corresponds to the
* interfaces passed in and whether they're supported or not. This allows
* you to batch check interfaces for a contract where your expectation
* is that some interfaces may not be supported.
*
* See {IERC165-supportsInterface}.
*
* _Available since v3.4._
*/
function getSupportedInterfaces(
address account,
bytes4[] memory interfaceIds
) internal view returns (bool[] memory) {
// an array of booleans corresponding to interfaceIds and whether they're supported or not
bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
// query support of ERC165 itself
if (supportsERC165(account)) {
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]);
}
}
return interfaceIdsSupported;
}
/**
* @dev Returns true if `account` supports all the interfaces defined in
* `interfaceIds`. Support for {IERC165} itself is queried automatically.
*
* Batch-querying can lead to gas savings by skipping repeated checks for
* {IERC165} support.
*
* See {IERC165-supportsInterface}.
*/
function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
// query support of ERC165 itself
if (!supportsERC165(account)) {
return false;
}
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) {
return false;
}
}
// all interfaces supported
return true;
}
/**
* @notice Query if a contract implements an interface, does not check ERC165 support
* @param account The address of the contract to query for support of an interface
* @param interfaceId The interface identifier, as specified in ERC-165
* @return true if the contract at account indicates support of the interface with
* identifier interfaceId, false otherwise
* @dev Assumes that account contains a contract that supports ERC165, otherwise
* the behavior of this method is undefined. This precondition can be checked
* with {supportsERC165}.
*
* Some precompiled contracts will falsely indicate support for a given interface, so caution
* should be exercised when using this function.
*
* Interface identification is specified in ERC-165.
*/
function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) {
// prepare call
bytes memory encodedParams = abi.encodeWithSelector(IERC165Upgradeable.supportsInterface.selector, interfaceId);
// perform static call
bool success;
uint256 returnSize;
uint256 returnValue;
assembly {
success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
returnSize := returndatasize()
returnValue := mload(0x00)
}
return success && returnSize >= 0x20 && returnValue > 0;
}
}
// File @openzeppelin/contracts-upgradeable/utils/introspection/ERC165Upgradeable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
function __ERC165_init() internal onlyInitializing {
}
function __ERC165_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165Upgradeable).interfaceId;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// File @openzeppelin/contracts/utils/Context.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// File @openzeppelin/contracts/access/Ownable.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File @openzeppelin/contracts/proxy/beacon/IBeacon.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
pragma solidity ^0.8.0;
/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/
interface IBeacon {
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {BeaconProxy} will check that this address is a contract.
*/
function implementation() external view returns (address);
}
// File @openzeppelin/contracts/interfaces/draft-IERC1822.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
pragma solidity ^0.8.0;
/**
* @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/
interface IERC1822Proxiable {
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/
function proxiableUUID() external view returns (bytes32);
}
// File @openzeppelin/contracts/interfaces/IERC1967.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
pragma solidity ^0.8.0;
/**
* @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
*
* _Available since v4.8.3._
*/
interface IERC1967 {
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
}
// File @openzeppelin/contracts/utils/Address.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File @openzeppelin/contracts/utils/StorageSlot.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// File @openzeppelin/contracts/proxy/ERC1967/ERC1967Upgrade.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
pragma solidity ^0.8.2;
/**
* @dev This abstract contract provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
*
* _Available since v4.1._
*/
abstract contract ERC1967Upgrade is IERC1967 {
// This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev Returns the current implementation address.
*/
function _getImplementation() internal view returns (address) {
return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
}
/**
* @dev Perform implementation upgrade
*
* Emits an {Upgraded} event.
*/
function _upgradeTo(address newImplementation) internal {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Perform implementation upgrade with additional setup call.
*
* Emits an {Upgraded} event.
*/
function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
_upgradeTo(newImplementation);
if (data.length > 0 || forceCall) {
Address.functionDelegateCall(newImplementation, data);
}
}
/**
* @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
*
* Emits an {Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
// Upgrades from old implementations will perform a rollback test. This test requires the new
// implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
// this special case will break upgrade paths from old UUPS implementation to new ones.
if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
_setImplementation(newImplementation);
} else {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
} catch {
revert("ERC1967Upgrade: new implementation is not UUPS");
}
_upgradeToAndCall(newImplementation, data, forceCall);
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*/
function _getAdmin() internal view returns (address) {
return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
require(newAdmin != address(0), "ERC1967: new admin is the zero address");
StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {AdminChanged} event.
*/
function _changeAdmin(address newAdmin) internal {
emit AdminChanged(_getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
*/
bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/
function _getBeacon() internal view returns (address) {
return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the EIP1967 beacon slot.
*/
function _setBeacon(address newBeacon) private {
require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
require(
Address.isContract(IBeacon(newBeacon).implementation()),
"ERC1967: beacon implementation is not a contract"
);
StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
}
/**
* @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
* not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
*
* Emits a {BeaconUpgraded} event.
*/
function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
_setBeacon(newBeacon);
emit BeaconUpgraded(newBeacon);
if (data.length > 0 || forceCall) {
Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
}
}
}
// File @openzeppelin/contracts/proxy/Proxy.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
pragma solidity ^0.8.0;
/**
* @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
* instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
* be specified by overriding the virtual {_implementation} function.
*
* Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
* different contract through the {_delegate} function.
*
* The success and return data of the delegated call will be returned back to the caller of the proxy.
*/
abstract contract Proxy {
/**
* @dev Delegates the current call to `implementation`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _delegate(address implementation) internal virtual {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize())
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
/**
* @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
* and {_fallback} should delegate.
*/
function _implementation() internal view virtual returns (address);
/**
* @dev Delegates the current call to the address returned by `_implementation()`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _fallback() internal virtual {
_beforeFallback();
_delegate(_implementation());
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
* function in the contract matches the call data.
*/
fallback() external payable virtual {
_fallback();
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
* is empty.
*/
receive() external payable virtual {
_fallback();
}
/**
* @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
* call, or as part of the Solidity `fallback` or `receive` functions.
*
* If overridden should call `super._beforeFallback()`.
*/
function _beforeFallback() internal virtual {}
}
// File @openzeppelin/contracts/proxy/beacon/BeaconProxy.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/beacon/BeaconProxy.sol)
pragma solidity ^0.8.0;
/**
* @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
*
* The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't
* conflict with the storage layout of the implementation behind the proxy.
*
* _Available since v3.4._
*/
contract BeaconProxy is Proxy, ERC1967Upgrade {
/**
* @dev Initializes the proxy with `beacon`.
*
* If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
* will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
* constructor.
*
* Requirements:
*
* - `beacon` must be a contract with the interface {IBeacon}.
*/
constructor(address beacon, bytes memory data) payable {
_upgradeBeaconToAndCall(beacon, data, false);
}
/**
* @dev Returns the current beacon address.
*/
function _beacon() internal view virtual returns (address) {
return _getBeacon();
}
/**
* @dev Returns the current implementation address of the associated beacon.
*/
function _implementation() internal view virtual override returns (address) {
return IBeacon(_getBeacon()).implementation();
}
/**
* @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}.
*
* If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon.
*
* Requirements:
*
* - `beacon` must be a contract.
* - The implementation returned by `beacon` must be a contract.
*/
function _setBeacon(address beacon, bytes memory data) internal virtual {
_upgradeBeaconToAndCall(beacon, data, false);
}
}
// File @openzeppelin/contracts/proxy/beacon/UpgradeableBeacon.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/UpgradeableBeacon.sol)
pragma solidity ^0.8.0;
/**
* @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
* implementation contract, which is where they will delegate all function calls.
*
* An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
*/
contract UpgradeableBeacon is IBeacon, Ownable {
address private _implementation;
/**
* @dev Emitted when the implementation returned by the beacon is changed.
*/
event Upgraded(address indexed implementation);
/**
* @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
* beacon.
*/
constructor(address implementation_) {
_setImplementation(implementation_);
}
/**
* @dev Returns the current implementation address.
*/
function implementation() public view virtual override returns (address) {
return _implementation;
}
/**
* @dev Upgrades the beacon to a new implementation.
*
* Emits an {Upgraded} event.
*
* Requirements:
*
* - msg.sender must be the owner of the contract.
* - `newImplementation` must be a contract.
*/
function upgradeTo(address newImplementation) public virtual onlyOwner {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Sets the implementation contract address for this beacon
*
* Requirements:
*
* - `newImplementation` must be a contract.
*/
function _setImplementation(address newImplementation) private {
require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
_implementation = newImplementation;
}
}
// File @openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
pragma solidity ^0.8.0;
/**
* @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
* implementation address that can be changed. This address is stored in storage in the location specified by
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
* implementation behind the proxy.
*/
contract ERC1967Proxy is Proxy, ERC1967Upgrade {
/**
* @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
*
* If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
* function call, and allows initializing the storage of the proxy like a Solidity constructor.
*/
constructor(address _logic, bytes memory _data) payable {
_upgradeToAndCall(_logic, _data, false);
}
/**
* @dev Returns the current implementation address.
*/
function _implementation() internal view virtual override returns (address impl) {
return ERC1967Upgrade._getImplementation();
}
}
// File @openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/transparent/TransparentUpgradeableProxy.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
* does not implement this interface directly, and some of its functions are implemented by an internal dispatch
* mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
* include them in the ABI so this interface must be used to interact with it.
*/
interface ITransparentUpgradeableProxy is IERC1967 {
function admin() external view returns (address);
function implementation() external view returns (address);
function changeAdmin(address) external;
function upgradeTo(address) external;
function upgradeToAndCall(address, bytes memory) external payable;
}
/**
* @dev This contract implements a proxy that is upgradeable by an admin.
*
* To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
* clashing], which can potentially be used in an attack, this contract uses the
* https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
* things that go hand in hand:
*
* 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
* that call matches one of the admin functions exposed by the proxy itself.
* 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
* implementation. If the admin tries to call a function on the implementation it will fail with an error that says
* "admin cannot fallback to proxy target".
*
* These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
* the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
* to sudden errors when trying to call a function from the proxy implementation.
*
* Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
* you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
*
* NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
* inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
* mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
* fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
* implementation.
*
* WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
* will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
* and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
* render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
*/
contract TransparentUpgradeableProxy is ERC1967Proxy {
/**
* @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
* optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
*/
constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
_changeAdmin(admin_);
}
/**
* @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
*
* CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
* implementation provides a function with the same selector.
*/
modifier ifAdmin() {
if (msg.sender == _getAdmin()) {
_;
} else {
_fallback();
}
}
/**
* @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
*/
function _fallback() internal virtual override {
if (msg.sender == _getAdmin()) {
bytes memory ret;
bytes4 selector = msg.sig;
if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
ret = _dispatchUpgradeTo();
} else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
ret = _dispatchUpgradeToAndCall();
} else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
ret = _dispatchChangeAdmin();
} else if (selector == ITransparentUpgradeableProxy.admin.selector) {
ret = _dispatchAdmin();
} else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
ret = _dispatchImplementation();
} else {
revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
}
assembly {
return(add(ret, 0x20), mload(ret))
}
} else {
super._fallback();
}
}
/**
* @dev Returns the current admin.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
* https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
*/
function _dispatchAdmin() private returns (bytes memory) {
_requireZeroValue();
address admin = _getAdmin();
return abi.encode(admin);
}
/**
* @dev Returns the current implementation.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
* https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
*/
function _dispatchImplementation() private returns (bytes memory) {
_requireZeroValue();
address implementation = _implementation();
return abi.encode(implementation);
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {AdminChanged} event.
*/
function _dispatchChangeAdmin() private returns (bytes memory) {
_requireZeroValue();
address newAdmin = abi.decode(msg.data[4:], (address));
_changeAdmin(newAdmin);
return "";
}
/**
* @dev Upgrade the implementation of the proxy.
*/
function _dispatchUpgradeTo() private returns (bytes memory) {
_requireZeroValue();
address newImplementation = abi.decode(msg.data[4:], (address));
_upgradeToAndCall(newImplementation, bytes(""), false);
return "";
}
/**
* @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
* by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
* proxied contract.
*/
function _dispatchUpgradeToAndCall() private returns (bytes memory) {
(address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
_upgradeToAndCall(newImplementation, data, true);
return "";
}
/**
* @dev Returns the current admin.
*
* CAUTION: This function is deprecated. Use {ERC1967Upgrade-_getAdmin} instead.
*/
function _admin() internal view virtual returns (address) {
return _getAdmin();
}
/**
* @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
* emulate some proxy functions being non-payable while still allowing value to pass through.
*/
function _requireZeroValue() private {
require(msg.value == 0);
}
}
// File @openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/ProxyAdmin.sol)
pragma solidity ^0.8.0;
/**
* @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
* explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
*/
contract ProxyAdmin is Ownable {
/**
* @dev Returns the current implementation of `proxy`.
*
* Requirements:
*
* - This contract must be the admin of `proxy`.
*/
function getProxyImplementation(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
// We need to manually run the static call since the getter cannot be flagged as view
// bytes4(keccak256("implementation()")) == 0x5c60da1b
(bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
require(success);
return abi.decode(returndata, (address));
}
/**
* @dev Returns the current admin of `proxy`.
*
* Requirements:
*
* - This contract must be the admin of `proxy`.
*/
function getProxyAdmin(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
// We need to manually run the static call since the getter cannot be flagged as view
// bytes4(keccak256("admin()")) == 0xf851a440
(bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
require(success);
return abi.decode(returndata, (address));
}
/**
* @dev Changes the admin of `proxy` to `newAdmin`.
*
* Requirements:
*
* - This contract must be the current admin of `proxy`.
*/
function changeProxyAdmin(ITransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
proxy.changeAdmin(newAdmin);
}
/**
* @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
*
* Requirements:
*
* - This contract must be the admin of `proxy`.
*/
function upgrade(ITransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
proxy.upgradeTo(implementation);
}
/**
* @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
* {TransparentUpgradeableProxy-upgradeToAndCall}.
*
* Requirements:
*
* - This contract must be the admin of `proxy`.
*/
function upgradeAndCall(
ITransparentUpgradeableProxy proxy,
address implementation,
bytes memory data
) public payable virtual onlyOwner {
proxy.upgradeToAndCall{value: msg.value}(implementation, data);
}
}
// File @openzeppelin/contracts/utils/introspection/IERC165.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File @openzeppelin/contracts/utils/introspection/ERC165.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// File @openzeppelin/contracts/utils/introspection/ERC165Checker.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/introspection/ERC165Checker.sol)
pragma solidity ^0.8.0;
/**
* @dev Library used to query support of an interface declared via {IERC165}.
*
* Note that these functions return the actual result of the query: they do not
* `revert` if an interface is not supported. It is up to the caller to decide
* what to do in these cases.
*/
library ERC165Checker {
// As per the EIP-165 spec, no interface should ever match 0xffffffff
bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
/**
* @dev Returns true if `account` supports the {IERC165} interface.
*/
function supportsERC165(address account) internal view returns (bool) {
// Any contract that implements ERC165 must explicitly indicate support of
// InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
return
supportsERC165InterfaceUnchecked(account, type(IERC165).interfaceId) &&
!supportsERC165InterfaceUnchecked(account, _INTERFACE_ID_INVALID);
}
/**
* @dev Returns true if `account` supports the interface defined by
* `interfaceId`. Support for {IERC165} itself is queried automatically.
*
* See {IERC165-supportsInterface}.
*/
function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
// query support of both ERC165 as per the spec and support of _interfaceId
return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId);
}
/**
* @dev Returns a boolean array where each value corresponds to the
* interfaces passed in and whether they're supported or not. This allows
* you to batch check interfaces for a contract where your expectation
* is that some interfaces may not be supported.
*
* See {IERC165-supportsInterface}.
*
* _Available since v3.4._
*/
function getSupportedInterfaces(
address account,
bytes4[] memory interfaceIds
) internal view returns (bool[] memory) {
// an array of booleans corresponding to interfaceIds and whether they're supported or not
bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
// query support of ERC165 itself
if (supportsERC165(account)) {
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]);
}
}
return interfaceIdsSupported;
}
/**
* @dev Returns true if `account` supports all the interfaces defined in
* `interfaceIds`. Support for {IERC165} itself is queried automatically.
*
* Batch-querying can lead to gas savings by skipping repeated checks for
* {IERC165} support.
*
* See {IERC165-supportsInterface}.
*/
function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
// query support of ERC165 itself
if (!supportsERC165(account)) {
return false;
}
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) {
return false;
}
}
// all interfaces supported
return true;
}
/**
* @notice Query if a contract implements an interface, does not check ERC165 support
* @param account The address of the contract to query for support of an interface
* @param interfaceId The interface identifier, as specified in ERC-165
* @return true if the contract at account indicates support of the interface with
* identifier interfaceId, false otherwise
* @dev Assumes that account contains a contract that supports ERC165, otherwise
* the behavior of this method is undefined. This precondition can be checked
* with {supportsERC165}.
*
* Some precompiled contracts will falsely indicate support for a given interface, so caution
* should be exercised when using this function.
*
* Interface identification is specified in ERC-165.
*/
function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) {
// prepare call
bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
// perform static call
bool success;
uint256 returnSize;
uint256 returnValue;
assembly {
success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
returnSize := returndatasize()
returnValue := mload(0x00)
}
return success && returnSize >= 0x20 && returnValue > 0;
}
}
// File src/core/permission/IPermissionCondition.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @title IPermissionCondition
/// @author Aragon Association - 2021-2023
/// @notice An interface to be implemented to support custom permission logic.
/// @dev To attach a condition to a permission, the `grantWithCondition` function must be used and refer to the implementing contract's address with the `condition` argument.
interface IPermissionCondition {
/// @notice Checks if a call is permitted.
/// @param _where The address of the target contract.
/// @param _who The address (EOA or contract) for which the permissions are checked.
/// @param _permissionId The permission identifier.
/// @param _data Optional data passed to the `PermissionCondition` implementation.
/// @return isPermitted Returns true if the call is permitted.
function isGranted(
address _where,
address _who,
bytes32 _permissionId,
bytes calldata _data
) external view returns (bool isPermitted);
}
// File src/core/permission/PermissionCondition.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @title PermissionCondition
/// @author Aragon Association - 2023
/// @notice An abstract contract for non-upgradeable contracts instantiated via the `new` keyword to inherit from to support customary permissions depending on arbitrary on-chain state.
abstract contract PermissionCondition is ERC165, IPermissionCondition {
/// @notice Checks if an interface is supported by this or its parent contract.
/// @param _interfaceId The ID of the interface.
/// @return Returns `true` if the interface is supported.
function supportsInterface(bytes4 _interfaceId) public view virtual override returns (bool) {
return
_interfaceId == type(IPermissionCondition).interfaceId ||
super.supportsInterface(_interfaceId);
}
}
// File src/core/permission/PermissionLib.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @title PermissionLib
/// @author Aragon Association - 2021-2023
/// @notice A library containing objects for permission processing.
library PermissionLib {
/// @notice A constant expressing that no condition is applied to a permission.
address public constant NO_CONDITION = address(0);
/// @notice The types of permission operations available in the `PermissionManager`.
/// @param Grant The grant operation setting a permission without a condition.
/// @param Revoke The revoke operation removing a permission (that was granted with or without a condition).
/// @param GrantWithCondition The grant operation setting a permission with a condition.
enum Operation {
Grant,
Revoke,
GrantWithCondition
}
/// @notice A struct containing the information for a permission to be applied on a single target contract without a condition.
/// @param operation The permission operation type.
/// @param who The address (EOA or contract) receiving the permission.
/// @param permissionId The permission identifier.
struct SingleTargetPermission {
Operation operation;
address who;
bytes32 permissionId;
}
/// @notice A struct containing the information for a permission to be applied on multiple target contracts, optionally, with a condition.
/// @param operation The permission operation type.
/// @param where The address of the target contract for which `who` receives permission.
/// @param who The address (EOA or contract) receiving the permission.
/// @param condition The `PermissionCondition` that will be asked for authorization on calls connected to the specified permission identifier.
/// @param permissionId The permission identifier.
struct MultiTargetPermission {
Operation operation;
address where;
address who;
address condition;
bytes32 permissionId;
}
}
// File src/core/permission/PermissionManager.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @title PermissionManager
/// @author Aragon Association - 2021-2023
/// @notice The abstract permission manager used in a DAO, its associated plugins, and other framework-related components.
abstract contract PermissionManager is Initializable {
using AddressUpgradeable for address;
/// @notice The ID of the permission required to call the `grant`, `grantWithCondition`, `revoke`, and `bulk` function.
bytes32 public constant ROOT_PERMISSION_ID = keccak256("ROOT_PERMISSION");
/// @notice A special address encoding permissions that are valid for any address `who` or `where`.
address internal constant ANY_ADDR = address(type(uint160).max);
/// @notice A special address encoding if a permissions is not set and therefore not allowed.
address internal constant UNSET_FLAG = address(0);
/// @notice A special address encoding if a permission is allowed.
address internal constant ALLOW_FLAG = address(2);
/// @notice A mapping storing permissions as hashes (i.e., `permissionHash(where, who, permissionId)`) and their status encoded by an address (unset, allowed, or redirecting to a `PermissionCondition`).
mapping(bytes32 => address) internal permissionsHashed;
/// @notice Thrown if a call is unauthorized.
/// @param where The context in which the authorization reverted.
/// @param who The address (EOA or contract) missing the permission.
/// @param permissionId The permission identifier.
error Unauthorized(address where, address who, bytes32 permissionId);
/// @notice Thrown if a permission has been already granted with a different condition.
/// @dev This makes sure that condition on the same permission can not be overwriten by a different condition.
/// @param where The address of the target contract to grant `_who` permission to.
/// @param who The address (EOA or contract) to which the permission has already been granted.
/// @param permissionId The permission identifier.
/// @param currentCondition The current condition set for permissionId.
/// @param newCondition The new condition it tries to set for permissionId.
error PermissionAlreadyGrantedForDifferentCondition(
address where,
address who,
bytes32 permissionId,
address currentCondition,
address newCondition
);
/// @notice Thrown if a condition address is not a contract.
/// @param condition The address that is not a contract.
error ConditionNotAContract(IPermissionCondition condition);
/// @notice Thrown if a condition contract does not support the `IPermissionCondition` interface.
/// @param condition The address that is not a contract.
error ConditionInterfacNotSupported(IPermissionCondition condition);
/// @notice Thrown for `ROOT_PERMISSION_ID` or `EXECUTE_PERMISSION_ID` permission grants where `who` or `where` is `ANY_ADDR`.
error PermissionsForAnyAddressDisallowed();
/// @notice Thrown for permission grants where `who` and `where` are both `ANY_ADDR`.
error AnyAddressDisallowedForWhoAndWhere();
/// @notice Thrown if `Operation.GrantWithCondition` is requested as an operation but the method does not support it.
error GrantWithConditionNotSupported();
/// @notice Emitted when a permission `permission` is granted in the context `here` to the address `_who` for the contract `_where`.
/// @param permissionId The permission identifier.
/// @param here The address of the context in which the permission is granted.
/// @param where The address of the target contract for which `_who` receives permission.
/// @param who The address (EOA or contract) receiving the permission.
/// @param condition The address `ALLOW_FLAG` for regular permissions or, alternatively, the `IPermissionCondition` contract implementation to be used.
event Granted(
bytes32 indexed permissionId,
address indexed here,
address where,
address indexed who,
address condition
);
/// @notice Emitted when a permission `permission` is revoked in the context `here` from the address `_who` for the contract `_where`.
/// @param permissionId The permission identifier.
/// @param here The address of the context in which the permission is revoked.
/// @param where The address of the target contract for which `_who` loses permission.
/// @param who The address (EOA or contract) losing the permission.
event Revoked(
bytes32 indexed permissionId,
address indexed here,
address where,
address indexed who
);
/// @notice A modifier to make functions on inheriting contracts authorized. Permissions to call the function are checked through this permission manager.
/// @param _permissionId The permission identifier required to call the method this modifier is applied to.
modifier auth(bytes32 _permissionId) {
_auth(_permissionId);
_;
}
/// @notice Initialization method to set the initial owner of the permission manager.
/// @dev The initial owner is granted the `ROOT_PERMISSION_ID` permission.
/// @param _initialOwner The initial owner of the permission manager.
function __PermissionManager_init(address _initialOwner) internal onlyInitializing {
_initializePermissionManager(_initialOwner);
}
/// @notice Grants permission to an address to call methods in a contract guarded by an auth modifier with the specified permission identifier.
/// @dev Requires the `ROOT_PERMISSION_ID` permission.
/// @param _where The address of the target contract for which `_who` receives permission.
/// @param _who The address (EOA or contract) receiving the permission.
/// @param _permissionId The permission identifier.
/// @dev Note, that granting permissions with `_who` or `_where` equal to `ANY_ADDR` does not replace other permissions with specific `_who` and `_where` addresses that exist in parallel.
function grant(
address _where,
address _who,
bytes32 _permissionId
) external virtual auth(ROOT_PERMISSION_ID) {
_grant(_where, _who, _permissionId);
}
/// @notice Grants permission to an address to call methods in a target contract guarded by an auth modifier with the specified permission identifier if the referenced condition permits it.
/// @dev Requires the `ROOT_PERMISSION_ID` permission
/// @param _where The address of the target contract for which `_who` receives permission.
/// @param _who The address (EOA or contract) receiving the permission.
/// @param _permissionId The permission identifier.
/// @param _condition The `PermissionCondition` that will be asked for authorization on calls connected to the specified permission identifier.
/// @dev Note, that granting permissions with `_who` or `_where` equal to `ANY_ADDR` does not replace other permissions with specific `_who` and `_where` addresses that exist in parallel.
function grantWithCondition(
address _where,
address _who,
bytes32 _permissionId,
IPermissionCondition _condition
) external virtual auth(ROOT_PERMISSION_ID) {
_grantWithCondition(_where, _who, _permissionId, _condition);
}
/// @notice Revokes permission from an address to call methods in a target contract guarded by an auth modifier with the specified permission identifier.
/// @dev Requires the `ROOT_PERMISSION_ID` permission.
/// @param _where The address of the target contract for which `_who` loses permission.
/// @param _who The address (EOA or contract) losing the permission.
/// @param _permissionId The permission identifier.
/// @dev Note, that revoking permissions with `_who` or `_where` equal to `ANY_ADDR` does not revoke other permissions with specific `_who` and `_where` addresses that exist in parallel.
function revoke(
address _where,
address _who,
bytes32 _permissionId
) external virtual auth(ROOT_PERMISSION_ID) {
_revoke(_where, _who, _permissionId);
}
/// @notice Applies an array of permission operations on a single target contracts `_where`.
/// @param _where The address of the single target contract.
/// @param items The array of single-targeted permission operations to apply.
function applySingleTargetPermissions(
address _where,
PermissionLib.SingleTargetPermission[] calldata items
) external virtual auth(ROOT_PERMISSION_ID) {
for (uint256 i; i < items.length; ) {
PermissionLib.SingleTargetPermission memory item = items[i];
if (item.operation == PermissionLib.Operation.Grant) {
_grant(_where, item.who, item.permissionId);
} else if (item.operation == PermissionLib.Operation.Revoke) {
_revoke(_where, item.who, item.permissionId);
} else if (item.operation == PermissionLib.Operation.GrantWithCondition) {
revert GrantWithConditionNotSupported();
}
unchecked {
++i;
}
}
}
/// @notice Applies an array of permission operations on multiple target contracts `items[i].where`.
/// @param _items The array of multi-targeted permission operations to apply.
function applyMultiTargetPermissions(
PermissionLib.MultiTargetPermission[] calldata _items
) external virtual auth(ROOT_PERMISSION_ID) {
for (uint256 i; i < _items.length; ) {
PermissionLib.MultiTargetPermission memory item = _items[i];
if (item.operation == PermissionLib.Operation.Grant) {
_grant(item.where, item.who, item.permissionId);
} else if (item.operation == PermissionLib.Operation.Revoke) {
_revoke(item.where, item.who, item.permissionId);
} else if (item.operation == PermissionLib.Operation.GrantWithCondition) {
_grantWithCondition(
item.where,
item.who,
item.permissionId,
IPermissionCondition(item.condition)
);
}
unchecked {
++i;
}
}
}
/// @notice Checks if an address has permission on a contract via a permission identifier and considers if `ANY_ADDRESS` was used in the granting process.
/// @param _where The address of the target contract for which `_who` receives permission.
/// @param _who The address (EOA or contract) for which the permission is checked.
/// @param _permissionId The permission identifier.
/// @param _data The optional data passed to the `PermissionCondition` registered.
/// @return Returns true if `_who` has the permissions on the target contract via the specified permission identifier.
function isGranted(
address _where,
address _who,
bytes32 _permissionId,
bytes memory _data
) public view virtual returns (bool) {
return
_isGranted(_where, _who, _permissionId, _data) || // check if `_who` has permission for `_permissionId` on `_where`
_isGranted(_where, ANY_ADDR, _permissionId, _data) || // check if anyone has permission for `_permissionId` on `_where`
_isGranted(ANY_ADDR, _who, _permissionId, _data); // check if `_who` has permission for `_permissionI` on any contract
}
/// @notice Grants the `ROOT_PERMISSION_ID` permission to the initial owner during initialization of the permission manager.
/// @param _initialOwner The initial owner of the permission manager.
function _initializePermissionManager(address _initialOwner) internal {
_grant(address(this), _initialOwner, ROOT_PERMISSION_ID);
}
/// @notice This method is used in the external `grant` method of the permission manager.
/// @param _where The address of the target contract for which `_who` receives permission.
/// @param _who The address (EOA or contract) owning the permission.
/// @param _permissionId The permission identifier.
/// @dev Note, that granting permissions with `_who` or `_where` equal to `ANY_ADDR` does not replace other permissions with specific `_who` and `_where` addresses that exist in parallel.
function _grant(address _where, address _who, bytes32 _permissionId) internal virtual {
if (_where == ANY_ADDR || _who == ANY_ADDR) {
revert PermissionsForAnyAddressDisallowed();
}
bytes32 permHash = permissionHash(_where, _who, _permissionId);
address currentFlag = permissionsHashed[permHash];
// Means permHash is not currently set.
if (currentFlag == UNSET_FLAG) {
permissionsHashed[permHash] = ALLOW_FLAG;
emit Granted(_permissionId, msg.sender, _where, _who, ALLOW_FLAG);
}
}
/// @notice This method is used in the external `grantWithCondition` method of the permission manager.
/// @param _where The address of the target contract for which `_who` receives permission.
/// @param _who The address (EOA or contract) owning the permission.
/// @param _permissionId The permission identifier.
/// @param _condition An address either resolving to a `PermissionCondition` contract address or being the `ALLOW_FLAG` address (`address(2)`).
/// @dev Note, that granting permissions with `_who` or `_where` equal to `ANY_ADDR` does not replace other permissions with specific `_who` and `_where` addresses that exist in parallel.
function _grantWithCondition(
address _where,
address _who,
bytes32 _permissionId,
IPermissionCondition _condition
) internal virtual {
address conditionAddr = address(_condition);
if (!conditionAddr.isContract()) {
revert ConditionNotAContract(_condition);
}
if (
!PermissionCondition(conditionAddr).supportsInterface(
type(IPermissionCondition).interfaceId
)
) {
revert ConditionInterfacNotSupported(_condition);
}
if (_where == ANY_ADDR && _who == ANY_ADDR) {
revert AnyAddressDisallowedForWhoAndWhere();
}
if (_where == ANY_ADDR || _who == ANY_ADDR) {
if (
_permissionId == ROOT_PERMISSION_ID ||
isPermissionRestrictedForAnyAddr(_permissionId)
) {
revert PermissionsForAnyAddressDisallowed();
}
}
bytes32 permHash = permissionHash(_where, _who, _permissionId);
address currentCondition = permissionsHashed[permHash];
// Means permHash is not currently set.
if (currentCondition == UNSET_FLAG) {
permissionsHashed[permHash] = conditionAddr;
emit Granted(_permissionId, msg.sender, _where, _who, conditionAddr);
} else if (currentCondition != conditionAddr) {
// Revert if `permHash` is already granted, but uses a different condition.
// If we don't revert, we either should:
// - allow overriding the condition on the same permission
// which could be confusing whoever granted the same permission first
// - or do nothing and succeed silently which could be confusing for the caller.
revert PermissionAlreadyGrantedForDifferentCondition({
where: _where,
who: _who,
permissionId: _permissionId,
currentCondition: currentCondition,
newCondition: conditionAddr
});
}
}
/// @notice This method is used in the public `revoke` method of the permission manager.
/// @param _where The address of the target contract for which `_who` receives permission.
/// @param _who The address (EOA or contract) owning the permission.
/// @param _permissionId The permission identifier.
/// @dev Note, that revoking permissions with `_who` or `_where` equal to `ANY_ADDR` does not revoke other permissions with specific `_who` and `_where` addresses that might have been granted in parallel.
function _revoke(address _where, address _who, bytes32 _permissionId) internal virtual {
bytes32 permHash = permissionHash(_where, _who, _permissionId);
if (permissionsHashed[permHash] != UNSET_FLAG) {
permissionsHashed[permHash] = UNSET_FLAG;
emit Revoked(_permissionId, msg.sender, _where, _who);
}
}
/// @notice Checks if a caller is granted permissions on a target contract via a permission identifier and redirects the approval to a `PermissionCondition` if this was specified in the setup.
/// @param _where The address of the target contract for which `_who` receives permission.
/// @param _who The address (EOA or contract) owning the permission.
/// @param _permissionId The permission identifier.
/// @param _data The optional data passed to the `PermissionCondition` registered.
/// @return Returns true if `_who` has the permissions on the contract via the specified permissionId identifier.
function _isGranted(
address _where,
address _who,
bytes32 _permissionId,
bytes memory _data
) internal view virtual returns (bool) {
address accessFlagOrCondition = permissionsHashed[
permissionHash(_where, _who, _permissionId)
];
if (accessFlagOrCondition == UNSET_FLAG) return false;
if (accessFlagOrCondition == ALLOW_FLAG) return true;
// Since it's not a flag, assume it's a PermissionCondition and try-catch to skip failures
try
IPermissionCondition(accessFlagOrCondition).isGranted(
_where,
_who,
_permissionId,
_data
)
returns (bool allowed) {
if (allowed) return true;
} catch {}
return false;
}
/// @notice A private function to be used to check permissions on the permission manager contract (`address(this)`) itself.
/// @param _permissionId The permission identifier required to call the method this modifier is applied to.
function _auth(bytes32 _permissionId) internal view virtual {
if (!isGranted(address(this), msg.sender, _permissionId, msg.data)) {
revert Unauthorized({
where: address(this),
who: msg.sender,
permissionId: _permissionId
});
}
}
/// @notice Generates the hash for the `permissionsHashed` mapping obtained from the word "PERMISSION", the contract address, the address owning the permission, and the permission identifier.
/// @param _where The address of the target contract for which `_who` receives permission.
/// @param _who The address (EOA or contract) owning the permission.
/// @param _permissionId The permission identifier.
/// @return The permission hash.
function permissionHash(
address _where,
address _who,
bytes32 _permissionId
) internal pure virtual returns (bytes32) {
return keccak256(abi.encodePacked("PERMISSION", _who, _where, _permissionId));
}
/// @notice Decides if the granting permissionId is restricted when `_who == ANY_ADDR` or `_where == ANY_ADDR`.
/// @param _permissionId The permission identifier.
/// @return Whether or not the permission is restricted.
/// @dev By default, every permission is unrestricted and it is the derived contract's responsibility to override it. Note, that the `ROOT_PERMISSION_ID` is included and not required to be set it again.
function isPermissionRestrictedForAnyAddr(
bytes32 _permissionId
) internal view virtual returns (bool) {
(_permissionId); // silence the warning.
return false;
}
/// @notice This empty reserved space is put in place to allow future versions to add new variables without shifting down storage in the inheritance chain (see [OpenZeppelin's guide about storage gaps](https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps)).
uint256[49] private __gap;
}
// File src/framework/plugin/repo/IPluginRepo.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity 0.8.17;
/// @title IPluginRepo
/// @author Aragon Association - 2022-2023
/// @notice The interface required for a plugin repository.
interface IPluginRepo {
/// @notice Updates the metadata for release with content `@fromHex(_releaseMetadata)`.
/// @param _release The release number.
/// @param _releaseMetadata The release metadata URI.
function updateReleaseMetadata(uint8 _release, bytes calldata _releaseMetadata) external;
/// @notice Creates a new plugin version as the latest build for an existing release number or the first build for a new release number for the provided `PluginSetup` contract address and metadata.
/// @param _release The release number.
/// @param _pluginSetupAddress The address of the plugin setup contract.
/// @param _buildMetadata The build metadata URI.
/// @param _releaseMetadata The release metadata URI.
function createVersion(
uint8 _release,
address _pluginSetupAddress,
bytes calldata _buildMetadata,
bytes calldata _releaseMetadata
) external;
}
// File @openzeppelin/contracts/proxy/Clones.sol@v4.9.5
// Original license: SPDX_License_Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/Clones.sol)
pragma solidity ^0.8.0;
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*
* _Available since v3.4._
*/
library Clones {
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
/// @solidity memory-safe-assembly
assembly {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create(0, 0x09, 0x37)
}
require(instance != address(0), "ERC1167: create failed");
}
/**
* @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple time will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
/// @solidity memory-safe-assembly
assembly {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create2(0, 0x09, 0x37, salt)
}
require(instance != address(0), "ERC1167: create2 failed");
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := keccak256(add(ptr, 0x43), 0x55)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
}
// File src/core/dao/IDAO.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @title IDAO
/// @author Aragon Association - 2022-2023
/// @notice The interface required for DAOs within the Aragon App DAO framework.
interface IDAO {
/// @notice The action struct to be consumed by the DAO's `execute` function resulting in an external call.
/// @param to The address to call.
/// @param value The native token value to be sent with the call.
/// @param data The bytes-encoded function selector and calldata for the call.
struct Action {
address to;
uint256 value;
bytes data;
}
/// @notice Checks if an address has permission on a contract via a permission identifier and considers if `ANY_ADDRESS` was used in the granting process.
/// @param _where The address of the contract.
/// @param _who The address of a EOA or contract to give the permissions.
/// @param _permissionId The permission identifier.
/// @param _data The optional data passed to the `PermissionCondition` registered.
/// @return Returns true if the address has permission, false if not.
function hasPermission(
address _where,
address _who,
bytes32 _permissionId,
bytes memory _data
) external view returns (bool);
/// @notice Updates the DAO metadata (e.g., an IPFS hash).
/// @param _metadata The IPFS hash of the new metadata object.
function setMetadata(bytes calldata _metadata) external;
/// @notice Emitted when the DAO metadata is updated.
/// @param metadata The IPFS hash of the new metadata object.
event MetadataSet(bytes metadata);
/// @notice Executes a list of actions. If a zero allow-failure map is provided, a failing action reverts the entire execution. If a non-zero allow-failure map is provided, allowed actions can fail without the entire call being reverted.
/// @param _callId The ID of the call. The definition of the value of `callId` is up to the calling contract and can be used, e.g., as a nonce.
/// @param _actions The array of actions.
/// @param _allowFailureMap A bitmap allowing execution to succeed, even if individual actions might revert. If the bit at index `i` is 1, the execution succeeds even if the `i`th action reverts. A failure map value of 0 requires every action to not revert.
/// @return The array of results obtained from the executed actions in `bytes`.
/// @return The resulting failure map containing the actions have actually failed.
function execute(
bytes32 _callId,
Action[] memory _actions,
uint256 _allowFailureMap
) external returns (bytes[] memory, uint256);
/// @notice Emitted when a proposal is executed.
/// @param actor The address of the caller.
/// @param callId The ID of the call.
/// @param actions The array of actions executed.
/// @param allowFailureMap The allow failure map encoding which actions are allowed to fail.
/// @param failureMap The failure map encoding which actions have failed.
/// @param execResults The array with the results of the executed actions.
/// @dev The value of `callId` is defined by the component/contract calling the execute function. A `Plugin` implementation can use it, for example, as a nonce.
event Executed(
address indexed actor,
bytes32 callId,
Action[] actions,
uint256 allowFailureMap,
uint256 failureMap,
bytes[] execResults
);
/// @notice Emitted when a standard callback is registered.
/// @param interfaceId The ID of the interface.
/// @param callbackSelector The selector of the callback function.
/// @param magicNumber The magic number to be registered for the callback function selector.
event StandardCallbackRegistered(
bytes4 interfaceId,
bytes4 callbackSelector,
bytes4 magicNumber
);
/// @notice Deposits (native) tokens to the DAO contract with a reference string.
/// @param _token The address of the token or address(0) in case of the native token.
/// @param _amount The amount of tokens to deposit.
/// @param _reference The reference describing the deposit reason.
function deposit(address _token, uint256 _amount, string calldata _reference) external payable;
/// @notice Emitted when a token deposit has been made to the DAO.
/// @param sender The address of the sender.
/// @param token The address of the deposited token.
/// @param amount The amount of tokens deposited.
/// @param _reference The reference describing the deposit reason.
event Deposited(
address indexed sender,
address indexed token,
uint256 amount,
string _reference
);
/// @notice Emitted when a native token deposit has been made to the DAO.
/// @dev This event is intended to be emitted in the `receive` function and is therefore bound by the gas limitations for `send`/`transfer` calls introduced by [ERC-2929](https://eips.ethereum.org/EIPS/eip-2929).
/// @param sender The address of the sender.
/// @param amount The amount of native tokens deposited.
event NativeTokenDeposited(address sender, uint256 amount);
/// @notice Setter for the trusted forwarder verifying the meta transaction.
/// @param _trustedForwarder The trusted forwarder address.
function setTrustedForwarder(address _trustedForwarder) external;
/// @notice Getter for the trusted forwarder verifying the meta transaction.
/// @return The trusted forwarder address.
function getTrustedForwarder() external view returns (address);
/// @notice Emitted when a new TrustedForwarder is set on the DAO.
/// @param forwarder the new forwarder address.
event TrustedForwarderSet(address forwarder);
/// @notice Setter for the [ERC-1271](https://eips.ethereum.org/EIPS/eip-1271) signature validator contract.
/// @param _signatureValidator The address of the signature validator.
function setSignatureValidator(address _signatureValidator) external;
/// @notice Emitted when the signature validator address is updated.
/// @param signatureValidator The address of the signature validator.
event SignatureValidatorSet(address signatureValidator);
/// @notice Checks whether a signature is valid for the provided hash by forwarding the call to the set [ERC-1271](https://eips.ethereum.org/EIPS/eip-1271) signature validator contract.
/// @param _hash The hash of the data to be signed.
/// @param _signature The signature byte array associated with `_hash`.
/// @return Returns the `bytes4` magic value `0x1626ba7e` if the signature is valid.
function isValidSignature(bytes32 _hash, bytes memory _signature) external returns (bytes4);
/// @notice Registers an ERC standard having a callback by registering its [ERC-165](https://eips.ethereum.org/EIPS/eip-165) interface ID and callback function signature.
/// @param _interfaceId The ID of the interface.
/// @param _callbackSelector The selector of the callback function.
/// @param _magicNumber The magic number to be registered for the function signature.
function registerStandardCallback(
bytes4 _interfaceId,
bytes4 _callbackSelector,
bytes4 _magicNumber
) external;
}
// File src/framework/plugin/setup/IPluginSetup.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @title IPluginSetup
/// @author Aragon Association - 2022-2023
/// @notice The interface required for a plugin setup contract to be consumed by the `PluginSetupProcessor` for plugin installations, updates, and uninstallations.
interface IPluginSetup {
/// @notice The data associated with a prepared setup.
/// @param helpers The address array of helpers (contracts or EOAs) associated with this plugin version after the installation or update.
/// @param permissions The array of multi-targeted permission operations to be applied by the `PluginSetupProcessor` to the installing or updating DAO.
struct PreparedSetupData {
address[] helpers;
PermissionLib.MultiTargetPermission[] permissions;
}
/// @notice The payload for plugin updates and uninstallations containing the existing contracts as well as optional data to be consumed by the plugin setup.
/// @param plugin The address of the `Plugin`.
/// @param currentHelpers The address array of all current helpers (contracts or EOAs) associated with the plugin to update from.
/// @param data The bytes-encoded data containing the input parameters for the preparation of update/uninstall as specified in the corresponding ABI on the version's metadata.
struct SetupPayload {
address plugin;
address[] currentHelpers;
bytes data;
}
/// @notice Prepares the installation of a plugin.
/// @param _dao The address of the installing DAO.
/// @param _data The bytes-encoded data containing the input parameters for the installation as specified in the plugin's build metadata JSON file.
/// @return plugin The address of the `Plugin` contract being prepared for installation.
/// @return preparedSetupData The deployed plugin's relevant data which consists of helpers and permissions.
function prepareInstallation(
address _dao,
bytes calldata _data
) external returns (address plugin, PreparedSetupData memory preparedSetupData);
/// @notice Prepares the update of a plugin.
/// @param _dao The address of the updating DAO.
/// @param _currentBuild The build number of the plugin to update from.
/// @param _payload The relevant data necessary for the `prepareUpdate`. See above.
/// @return initData The initialization data to be passed to upgradeable contracts when the update is applied in the `PluginSetupProcessor`.
/// @return preparedSetupData The deployed plugin's relevant data which consists of helpers and permissions.
function prepareUpdate(
address _dao,
uint16 _currentBuild,
SetupPayload calldata _payload
) external returns (bytes memory initData, PreparedSetupData memory preparedSetupData);
/// @notice Prepares the uninstallation of a plugin.
/// @param _dao The address of the uninstalling DAO.
/// @param _payload The relevant data necessary for the `prepareUninstallation`. See above.
/// @return permissions The array of multi-targeted permission operations to be applied by the `PluginSetupProcessor` to the uninstalling DAO.
function prepareUninstallation(
address _dao,
SetupPayload calldata _payload
) external returns (PermissionLib.MultiTargetPermission[] memory permissions);
/// @notice Returns the plugin implementation address.
/// @return The address of the plugin implementation contract.
/// @dev The implementation can be instantiated via the `new` keyword, cloned via the minimal clones pattern (see [ERC-1167](https://eips.ethereum.org/EIPS/eip-1167)), or proxied via the UUPS pattern (see [ERC-1822](https://eips.ethereum.org/EIPS/eip-1822)).
function implementation() external view returns (address);
}
// File src/utils/Proxy.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @notice Free function to create a [ERC-1967](https://eips.ethereum.org/EIPS/eip-1967) proxy contract based on the passed base contract address.
/// @param _logic The base contract address.
/// @param _data The constructor arguments for this contract.
/// @return The address of the proxy contract created.
/// @dev Initializes the upgradeable proxy with an initial implementation specified by _logic. If _data is non-empty, it’s used as data in a delegate call to _logic. This will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity constructor (see [OpenZeppelin ERC1967Proxy-constructor](https://docs.openzeppelin.com/contracts/4.x/api/proxy#ERC1967Proxy-constructor-address-bytes-)).
function createERC1967Proxy(address _logic, bytes memory _data) returns (address) {
return address(new ERC1967Proxy(_logic, _data));
}
// File src/framework/plugin/setup/PluginSetup.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @title PluginSetup
/// @author Aragon Association - 2022-2023
/// @notice An abstract contract that developers have to inherit from to write the setup of a plugin.
abstract contract PluginSetup is ERC165, IPluginSetup {
/// @inheritdoc IPluginSetup
function prepareUpdate(
address _dao,
uint16 _currentBuild,
SetupPayload calldata _payload
)
external
virtual
override
returns (bytes memory initData, PreparedSetupData memory preparedSetupData)
{}
/// @notice A convenience function to create an [ERC-1967](https://eips.ethereum.org/EIPS/eip-1967) proxy contract pointing to an implementation and being associated to a DAO.
/// @param _implementation The address of the implementation contract to which the proxy is pointing to.
/// @param _data The data to initialize the storage of the proxy contract.
/// @return The address of the created proxy contract.
function createERC1967Proxy(
address _implementation,
bytes memory _data
) internal returns (address) {
return createERC1967(_implementation, _data);
}
/// @notice Checks if this or the parent contract supports an interface by its ID.
/// @param _interfaceId The ID of the interface.
/// @return Returns `true` if the interface is supported.
function supportsInterface(bytes4 _interfaceId) public view virtual override returns (bool) {
return
_interfaceId == type(IPluginSetup).interfaceId || super.supportsInterface(_interfaceId);
}
}
// File src/utils/protocol/IProtocolVersion.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.8;
/// @title IProtocolVersion
/// @author Aragon Association - 2022-2023
/// @notice An interface defining the semantic OSx protocol version.
interface IProtocolVersion {
/// @notice Returns the protocol version at which the current contract was built. Use it to check for future upgrades that might be applicable.
/// @return _version Returns the semantic OSx protocol version.
function protocolVersion() external view returns (uint8[3] memory _version);
}
// File src/utils/protocol/ProtocolVersion.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity 0.8.17;
/// @title ProtocolVersion
/// @author Aragon Association - 2023
/// @notice An abstract, stateless, non-upgradeable contract serves as a base for other contracts requiring awareness of the OSx protocol version.
/// @dev Do not add any new variables to this contract that would shift down storage in the inheritance chain.
abstract contract ProtocolVersion is IProtocolVersion {
// IMPORTANT: Do not add any storage variable, see the above notice.
/// @inheritdoc IProtocolVersion
function protocolVersion() public pure returns (uint8[3] memory) {
return [1, 3, 0];
}
}
// File src/framework/plugin/repo/PluginRepo.sol
// Original license: SPDX_License_Identifier: AGPL-3.0-or-later
pragma solidity 0.8.17;
/// @title PluginRepo
/// @author Aragon Association - 2020 - 2023
/// @notice The plugin repository contract required for managing and publishing different plugin versions within the Aragon DAO framework.
contract PluginRepo is
Initializable,
ERC165Upgradeable,
IPluginRepo,
UUPSUpgradeable,
ProtocolVersion,
PermissionManager
{
using AddressUpgradeable for address;
using ERC165CheckerUpgradeable for address;
/// @notice The struct describing the tag of a version obtained by a release and build number as `RELEASE.BUILD`.
/// @param release The release number.
/// @param build The build number
/// @dev Releases can include a storage layout or the addition of new functions. Builds include logic changes or updates of the UI.
struct Tag {
uint8 release;
uint16 build;
}
/// @notice The struct describing a plugin version (release and build).
/// @param tag The version tag.
/// @param pluginSetup The setup contract associated with this version.
/// @param buildMetadata The build metadata URI.
struct Version {
Tag tag;
address pluginSetup;
bytes buildMetadata;
}
/// @notice The ID of the permission required to call the `createVersion` function.
bytes32 public constant MAINTAINER_PERMISSION_ID = keccak256("MAINTAINER_PERMISSION");
/// @notice The ID of the permission required to call the `createVersion` function.
bytes32 public constant UPGRADE_REPO_PERMISSION_ID = keccak256("UPGRADE_REPO_PERMISSION");
/// @notice The mapping between release and build numbers.
mapping(uint8 => uint16) internal buildsPerRelease;
/// @notice The mapping between the version hash and the corresponding version information.
mapping(bytes32 => Version) internal versions;
/// @notice The mapping between the plugin setup address and its corresponding version hash.
mapping(address => bytes32) internal latestTagHashForPluginSetup;
/// @notice The ID of the latest release.
/// @dev The maximum release number is 255.
uint8 public latestRelease;
/// @notice Thrown if a version does not exist.
/// @param versionHash The tag hash.
error VersionHashDoesNotExist(bytes32 versionHash);
/// @notice Thrown if a plugin setup contract does not inherit from `PluginSetup`.
error InvalidPluginSetupInterface();
/// @notice Thrown if a release number is zero.
error ReleaseZeroNotAllowed();
/// @notice Thrown if a release number is incremented by more than one.
/// @param latestRelease The latest release number.
/// @param newRelease The new release number.
error InvalidReleaseIncrement(uint8 latestRelease, uint8 newRelease);
/// @notice Thrown if the same plugin setup contract exists already in a previous releases.
/// @param release The release number of the already existing plugin setup.
/// @param build The build number of the already existing plugin setup.
/// @param pluginSetup The plugin setup contract address.
error PluginSetupAlreadyInPreviousRelease(uint8 release, uint16 build, address pluginSetup);
/// @notice Thrown if the metadata URI is empty.
error EmptyReleaseMetadata();
/// @notice Thrown if release does not exist.
error ReleaseDoesNotExist();
/// @notice Thrown if the same plugin setup exists in previous releases.
/// @param release The release number.
/// @param build The build number.
/// @param pluginSetup The address of the plugin setup contract.
/// @param buildMetadata The build metadata URI.
event VersionCreated(
uint8 release,
uint16 build,
address indexed pluginSetup,
bytes buildMetadata
);
/// @notice Thrown when a release's metadata was updated.
/// @param release The release number.
/// @param releaseMetadata The release metadata URI.
event ReleaseMetadataUpdated(uint8 release, bytes releaseMetadata);
/// @dev Used to disallow initializing the implementation contract by an attacker for extra safety.
constructor() {
_disableInitializers();
}
/// @notice Initializes the contract by
/// - initializing the permission manager
/// - granting the `MAINTAINER_PERMISSION_ID` permission to the initial owner.
/// @dev This method is required to support [ERC-1822](https://eips.ethereum.org/EIPS/eip-1822).
function initialize(address initialOwner) external initializer {
__PermissionManager_init(initialOwner);
_grant(address(this), initialOwner, MAINTAINER_PERMISSION_ID);
_grant(address(this), initialOwner, UPGRADE_REPO_PERMISSION_ID);
}
/// @inheritdoc IPluginRepo
function createVersion(
uint8 _release,
address _pluginSetup,
bytes calldata _buildMetadata,
bytes calldata _releaseMetadata
) external auth(MAINTAINER_PERMISSION_ID) {
if (!_pluginSetup.supportsInterface(type(IPluginSetup).interfaceId)) {
revert InvalidPluginSetupInterface();
}
if (_release == 0) {
revert ReleaseZeroNotAllowed();
}
// Check that the release number is not incremented by more than one
if (_release - latestRelease > 1) {
revert InvalidReleaseIncrement({latestRelease: latestRelease, newRelease: _release});
}
if (_release > latestRelease) {
latestRelease = _release;
if (_releaseMetadata.length == 0) {
revert EmptyReleaseMetadata();
}
}
// Make sure the same plugin setup wasn't used in previous releases.
Version storage version = versions[latestTagHashForPluginSetup[_pluginSetup]];
if (version.tag.release != 0 && version.tag.release != _release) {
revert PluginSetupAlreadyInPreviousRelease(
version.tag.release,
version.tag.build,
_pluginSetup
);
}
uint16 build = ++buildsPerRelease[_release];
Tag memory tag = Tag(_release, build);
bytes32 _tagHash = tagHash(tag);
versions[_tagHash] = Version(tag, _pluginSetup, _buildMetadata);
latestTagHashForPluginSetup[_pluginSetup] = _tagHash;
emit VersionCreated({
release: _release,
build: build,
pluginSetup: _pluginSetup,
buildMetadata: _buildMetadata
});
if (_releaseMetadata.length > 0) {
emit ReleaseMetadataUpdated(_release, _releaseMetadata);
}
}
/// @inheritdoc IPluginRepo
function updateReleaseMetadata(
uint8 _release,
bytes calldata _releaseMetadata
) external auth(MAINTAINER_PERMISSION_ID) {
if (_release == 0) {
revert ReleaseZeroNotAllowed();
}
if (_release > latestRelease) {
revert ReleaseDoesNotExist();
}
if (_releaseMetadata.length == 0) {
revert EmptyReleaseMetadata();
}
emit ReleaseMetadataUpdated(_release, _releaseMetadata);
}
/// @notice Returns the latest version for a given release number.
/// @param _release The release number.
/// @return The latest version of this release.
function getLatestVersion(uint8 _release) public view returns (Version memory) {
uint16 latestBuild = uint16(buildsPerRelease[_release]);
return getVersion(tagHash(Tag(_release, latestBuild)));
}
/// @notice Returns the latest version for a given plugin setup.
/// @param _pluginSetup The plugin setup address
/// @return The latest version associated with the plugin Setup.
function getLatestVersion(address _pluginSetup) public view returns (Version memory) {
return getVersion(latestTagHashForPluginSetup[_pluginSetup]);
}
/// @notice Returns the version associated with a tag.
/// @param _tag The version tag.
/// @return The version associated with the tag.
function getVersion(Tag calldata _tag) public view returns (Version memory) {
return getVersion(tagHash(_tag));
}
/// @notice Returns the version for a tag hash.
/// @param _tagHash The tag hash.
/// @return The version associated with a tag hash.
function getVersion(bytes32 _tagHash) public view returns (Version memory) {
Version storage version = versions[_tagHash];
if (version.tag.release == 0) {
revert VersionHashDoesNotExist(_tagHash);
}
return version;
}
/// @notice Gets the total number of builds for a given release number.
/// @param _release The release number.
/// @return The number of builds of this release.
function buildCount(uint8 _release) public view returns (uint256) {
return buildsPerRelease[_release];
}
/// @notice The hash of the version tag obtained from the packed, bytes-encoded release and build number.
/// @param _tag The version tag.
/// @return The version tag hash.
function tagHash(Tag memory _tag) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(_tag.release, _tag.build));
}
/// @notice Internal method authorizing the upgrade of the contract via the [upgradeability mechanism for UUPS proxies](https://docs.openzeppelin.com/contracts/4.x/api/proxy#UUPSUpgradeable) (see [ERC-1822](https://eips.ethereum.org/EIPS/eip-1822)).
/// @dev The caller must have the `UPGRADE_REPO_PERMISSION_ID` permission.
function _authorizeUpgrade(
address
) internal virtual override auth(UPGRADE_REPO_PERMISSION_ID) {}
/// @notice Checks if this or the parent contract supports an interface by its ID.
/// @param _interfaceId The ID of the interface.
/// @return Returns `true` if the interface is supported.
function supportsInterface(bytes4 _interfaceId) public view virtual override returns (bool) {
return
_interfaceId == type(IPluginRepo).interfaceId ||
_interfaceId == type(IProtocolVersion).interfaceId ||
super.supportsInterface(_interfaceId);
}
} Constructor Arguments[] Hardhat Verify Plugin Version0.7.0 Repo Link (Optional)https://github.com/aragon/osx (main branch) Additional DetailsIn the past, I deployed the contract in which it was deploying another contract. at that time, there was a bug with zksync where contracts deployed by other contracts weren't verified. Now, the contract is on the sepolia zksync explorer, but i still can't verify 😦 - This contract is the one that was deployed by another contract almost 6-7 months ago. i am using hardhat zksync 0.7.0 now. Is the problem still relevant ? |
Beta Was this translation helpful? Give feedback.
Replies: 1 comment 5 replies
-
HI @novaknole, thanks for sharing this. Can you also share the exact reproduction steps you took to try to verify, including the error message you received? |
Beta Was this translation helpful? Give feedback.
@novaknole Looking closer at your contracts from the
main
branch of theosx
repo, it appears thatPluginRepo.sol
is being created fromPluginRepoFactory.sol
via.deployUUPSProxy(...)
where an_initialOwner
is being passed in.With this in mind, be sure to pass in the constructor arguments when attempting to verify, e.g.
npx hardhat verify --config hardhat-zksync.config.ts --network zksyncSepolia 0x3eEBec312413D4e15122C6D35fE1eA6fa607D159 0x00000000000000000000000022ee909b94c5faeee67b7e187ca81e5a291a9ec0
Also, looking at the PluginRepoRegistry, this contract was made with
zksolc 1.4.1
and not1.5.0
as pointed out.Furthermore, taking the single-file code output you listed above there's an …